[1] Pillai R, Wessel E, Nowak W J, et al. Predicting effect of base alloy composition on oxidation-and interdiffusion-induced degradation of an MCrAlY coating[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(8):1520-1526.
[2] Wang Z, Yan Y, Su Y, et al. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment[J]. Applied Surface Science, 2017, 406:319-329.
[3] Munoz A I, Schwiesau J, Jolles B M, et al. In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids[J]. Acta Biomaterialia, 2015, 21:228-236.
[4] 杨永强, 刘洋, 宋长辉. 金属零件3D打印技术现状及研究进展[J]. 机电工程技术, 2013, 42(4):1-7.
[5] Zhou Y, Li N, Yan J, et al. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods[J]. The Journal of prosthetic dentistry, 2018, 120(4):617-623.
[6] Kempen K, Thijs L, Van Humbeeck J, et al. Processing AlSi10Mg by selective laser melting:Parameter optimisation and material characterisation[J]. Materials Science and Technology, 2015, 31(8):917-923.
[7] Guo N, Leu M C. Additive manufacturing:Technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3):215-243.
[8] 韩寿波, 张义文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用[J]. 粉末冶金工业, 2017, 27(6):44-51.
[9] Li D, He J, Tian X, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering), 2013, 49(6):129-135.
[10] Conner B P, Manogharan G P, Martof A N, et al. Making sense of 3D printing:Creating a map of additive manufacturing products and services[J]. Additive Manufacturing, 2014, 1:64-76.
[11] Van Elsen M, Al-Bender F, Kruth J P. Application of dimensional analysis to selective laser melting[J]. Rapid Prototyping Journal, 2008, 14(1):15-22.
[12] Di W, Yongqiang Y, Xubin S, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12):1189-1199.
[13] 杨恬恬, 闫岸如, 王燕灵, 等. K640高温合金激光选区熔化成形工艺及性能研究[J]. 应用激光, 2016, 36(1):5-12.
[14] Cloots M, Kunze K, Uggowitzer P J, et al. Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy Mar-M509 produced by selective laser melting[J]. Materials Science and Engineering:A, 2016, 658:68-76.
[15] Lu Y, Gan Y, Lin J, et al. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM[J]. Rapid Prototyping Journal, 2017, 23(1):28-33.
[16] Wang J H, Ren J, Liu W, et al. Effect of selective laser melting process parameters on microstructure and Properties of Co-Cr Alloy[J]. Materials, 2018, 11(9):1546.
[17] Wen S F, Li S, Wei Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214(11):2660-2667.
[18] Di W, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12):1189-1199.
[19] Chen Z W, Darvish K, Pasang T. Effects of Laser Power on Track Profile and Structure Formation during Selective Laser Melting of CoCrMo Alloy[C]//Materials Science Forum. Trans Tech Publications, 2017, 879:330-334.
[20] Ciurana J, Hernandez L, Delgado J. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1103-1110.
[21] Niendorf T, Leuders S, Riemer A, et al. Highly anisotropic steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 2013, 44(4):794-796.
[22] 王迪, 杨永强, 黄延录, 等. 层间扫描策略对SLM直接成型金属零件质量的影响[J]. 激光技术, 2009, 34(4):447-451.
[23] Pupo Y, Serenó L, de Ciurana J. Surface quality analysis in selective laser melting with CoCrMo powders[C]//Materials Science Forum. Trans Tech Publications, 2014, 797:157-162.
[24] ASM specialty handbook:Heat-resistant materials[M]. Ohio:ASM International, 1997.
[25] Davies J R. ASM specialty handbook:Nickel, cobalt, and their alloys[J]. Materials Park, Ohio:ASM International, 2000, doi:10.5860oice.38-6206.
[26] 张强, 张宏炜, 贾新云, 等. 钴基铸造高温合金K6509的研究[J]. 材料工程, 2009(suppl1):142-145.
[27] Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature[J]. Materials Letters, 2003, 57(19):2823-2828.
[28] Jiang L, Brooks C R, Liaw P K, et al. Low-cycle fatigue behavior of ULTIMET® alloy[J]. Metallurgical and Materials Transactions A, 2004, 35(3):785-796.
[29] Monroy K, Delgado J, Ciurana J. Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process[J]. Procedia Engineering, 2013, 63:361-369.
[30] Li R, Liu J, Shi Y, et al. 316L stainless steel with gradient porosity fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 2010, 19(5):666-671.
[31] Gong H, Rafi K, Gu H, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1:87-98.
[32] F. Rezai-Aria, François M, Rémy L. Thermal fatigue of MAR-M 509 superalloy I:The influence of specimen geometry[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 11(4):277-289.
[33] Rezai-Aria F, Dambrine B, Rémy L. Thermal fatigue of MAR-M509 superalloyII:Evaluation of life prediction models[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(4):291-302.
[34] Mróz M, Orłowicz W, Tupaj M. Evaluation of fractures in MAR-M509 alloy samples after fatigue strength tests[J]. Archives of Foundry Engineering, 2010, 10(3):115-118.
[35] Kajima Y, Takaichi A, Kittikundecha N, et al. Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2018, 726:21-31.
[36] Bedolla-Gil Y, Juarez-Hernandez A, Perez-Unzueta A, et al. Influence of heat treatments on mechanical properties of a biocompatility alloy ASTM F75[J]. Revista Mexicana De Fisica, 2009, 55(1):1-5.
[37] Huang Y L. Effect of heat treatment on properties of cast CoCrMo alloy[J]. Shanghai Gangyan, 2003, 4(1):27-31.
[38] Antunes L H M, Hoyos J J, Fonseca E B, et al. Effect of phase transformation on ductility of additively manufactured Co-28Cr-6Mo alloy:An in situ synchrotron X-ray diffraction study during mechanical testing[J]. Materials Science and Engineering:A, 2019, 764:138262.
[39] Lee S H, Takahashi E, Nomura N, et al. Effect of heat treatment on microstructure and mechanical properties of Ni-and C-free Co-Cr-Mo alloys for medical applications[J]. Materials transactions, 2005, 46(8):1790-1793.
[40] Yan X, Lin H, Wu Y, et al. Effect of two heat treatments on mechanical properties of selective-laser-melted Co-Cr metal-ceramic alloys for application in thin removable partial dentures[J]. The Journal of prosthetic dentistry, 2018, 119(6):1028.
[41] Zhang G Q, Li J X, Zhou X Y, et al. Effect of heat treatment on the properties of CoCrMo alloy manufactured by selective laser melting[J]. Journal of Materials Engineering and Performance, 2018, 27(5):2281-2287.