[1] Dally J W, Fourney W L, Irwin G R. On the uniqueness of the stress intensity factor:Crack velocity relationship[J]. International Journal of Fracture, 1985, 27(3-4):159-168.
[2] Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1997, 12(4):527-535.
[3] Palaniswamy K. Crack propagation under general inplane loading[D]. Pasadena:California Institute of Technology, 1972.
[4] Sih G C. Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture, 1974, 10(3):305-321.
[5] Sih G C. Some basic problems in fracture mechanics and new concepts[J]. Engineering Fracture Mechanics, 1973, 5(2):365-377.
[6] Xu S L, Reinhardt H W. Determination of double-K, criterion for crack propagation in quasi-brittle fracture, Part II:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
[7] Kumar S, Barai S V. Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(10):645-660.
[8] Yu K Q, Lu Z D. Determining residual double-K fracture toughness of post-fire concrete using analytical and weight function method[J]. Materials and Structures, 2013, 47(5):839-852.
[9] 徐世烺, 赵国藩. 混凝土结构裂缝扩展的双K断裂准则[J]. 土木工程学报, 1992, 25(2):32-38.
[10] 马颖利. 实验研究混凝土双参数模型和双K断裂准则[D]. 大连:大连理工大学, 2002.
[11] 杨锋平, 孙秦, 罗金恒, 等. 平面状态下EWK延性断裂准则与K准则对比研究[J]. 船舶力学, 2011, 15(5):506-512.
[12] 王殿富. 可靠性设计对断裂力学K-准则的一个应用[J]. 哈尔滨工业大学学报, 1980(4):15-21.
[13] Vallejo L E. The brittle and ductile behavior of clay samples containing a crack under mixed mode loading[J]. Theoretical & Applied Fracture Mechanics, 1988, 10(1):73-78.
[14] Selcuk S, Hurd D S, Crouch S L, et al. Prediction of interfacial crack path:A direct boundary integral approach and experimental study[J]. International Journal of Fracture, 1994, 67(1):1-20.
[15] Plank R, Kuhn G. Fatigue crack propagation under nonproportional mixed mode loading[J]. Engineering Fracture Mechanics, 1999, 62(2-3):203-229.
[16] 刘小妹, 刘一华, 梁拥成. V型切口脆性断裂的最大周向应力准则[J]. 合肥工业大学学报(自然科学版), 2004, 27(9):1043-1046.
[17] 刘一华, 崔书文, 陈继光. 结合材料界面端脆性断裂的最大周向应力准则[J]. 合肥工业大学学报(自然科学版), 2007, 30(2):200-202.
[18] Chang K J. On the maximum strain criterion-a new approach to the angled crack problem[J]. Engineering Fracture Mechanics, 1981, 14(1):107-124.
[19] 金浏, 杜修力, 黄景琦. 多轴加载下混凝土细观破坏模拟的强度准则探讨[J]. 计算力学学报, 2015, 32(3):322-331.
[20] 翟越, 赵均海, 艾晓芹, 等. 基于统一强度理论的巴西圆盘劈裂强度分析[J]. 建筑科学与工程学报, 2015, 32(3):46-51.
[21] 沈成康. 断裂力学[M]. 上海:同济大学出版社, 1996.
[22] Kipp M E, Sih G C. The strain energy density failure criterion applied to notched elastic solids[J]. International Journal of Solids & Structures, 1975, 11(2):153-173.
[23] Gdoutos E E, Brock L M. Problems of mixed mode crack propagation[M]. Leiden:Martinus Nijhoff Press, 1984.
[24] 尹华杰. 复合型裂纹的脆性断裂应变能密度因子理论的精确解法[J]. 郑州工学院学报, 1989, 10(4):105-110.
[25] Maiti S K, Smith R A. Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field[J]. International Journal of Fracture, 1984, 24(1):5-22.
[26] 孙倩, 李树忱, 冯现大, 等. 基于应变能密度理论的岩石破裂数值模拟方法研究[J]. 岩土力学, 2011, 32(5):1575-1582.
[27] 张少琴, 朱永昭, 胡海平. 关于复合材料单层板Ⅰ型裂纹应变能密度因子的推导和讨论[J]. 太原重型机械学院学报, 1986, 7(3):25-32.
[28] Qian R J. Applying strain energy density factor theory to propagation estimating of surface crack in tubular Tjoints[J]. Engineering Fracture Mechanics, 1996, 53(6):849-851, 853-858.
[29] Nuismer R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture, 1975, 11(2):245-250.
[30] Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221(2):163-198.
[31] 赵诒枢. 最大能量释放率准则及其近似[J]. 机械强度, 1984(4):29-34.
[32] 赵诒枢. 广义最大能量释放率断裂准则[J]. 华中工学院学报, 1985, 13(1):57-60.
[33] Wu C H. Maximum-energy-release-rate criterion applied to a tension-compression specimen with crack[J]. Journal of Elasticity, 1978, 8(3):235-257.
[34] Claydon P W. Maximum energy release rate distribution from a generalized 3D virtual crack extension method[J]. Engineering Fracture Mechanics, 1992, 42(6):961-969.
[35] Lim I L, Johnston I W, Choi S K, et al. Fracture testing of a soft rock with semi-circular specimens under threepoint bending(Part 1-mode I)[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1994, 31(3):185-197.
[36] Aliha M R M, Ashtari R, Ayatollahi M R. Mode I and mode II fracture toughness testing for a coarse grain marble[J]. Applied Mechanics & Materials, 2006, 5:181-188.
[37] Khan K, Al-Shayea N A. Effect of specimen geometry and testing method on mixed mode I-II fracture toughness of a limestone rock from Saudi Arabia[J]. Rock Mechanics and Rock Engineering, 2000, 33(3):179-206.
[38] Williams M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1959, 24:109-114.
[39] Williams J G, Ewing P D. Fracture under complex stress:The angled crack problem[J]. International Journal of Fracture Mechanics, 1972, 8(4):441-446.
[40] Smith D J, Ayatollahi M R, Pavier M J. The role of Tstress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 24(2):137-150.
[41] Aliha M R M, Ayatollahi M R, Smith D J, et al. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading[J]. Engineering Fracture Mechanics, 2010, 77(11):2200-2212.
[42] Ayatollahi M R, Aliha M R M, Hassani M M. Mixed mode brittle fracture in PMMA:An experimental study using SCB specimens[J]. Materials Science & Engineering:A, 2006, 417(1):348-356.
[43] 赵艳华, 陈晋, 张华. T应力对Ⅰ-Ⅱ复合型裂纹扩展的影响[J]. 工程力学, 2010, 27(4):5-12.
[44] 唐世斌, 黄润秋, 唐春安, 等. 考虑T应力的最大周向应变断裂准则研究[J]. 土木工程学报, 2016, 49(9):87-95.
[45] Akbardoost J, Ayatollahi M R. Experimental analysis of mixed mode crack propagation in brittle rocks:The effect of non-singular terms[J]. Engineering Fracture Mechanics, 2014, 129:77-89.
[46] Mirsayar M M. Mixed mode fracture analysis using extended maximum tangential strain criterion[J]. Materials & Design, 2015, 86:941-947.
[47] Mirsayar M M, Razmi A, Aliha M R M, et al. EMTSN criterion for evaluating mixed mode I/II crack propagation in rock materials[J]. Engineering Fracture Mechanics, 2018, 190:186-197.
[48] Hua W, Dong S, Pan X, et al. Mixed mode fracture analysis of CCBD specimens based on the extended maximum tangential strain criterion[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(12):2118-2127.
[49] Deda Y, Ikeda K, Yao T, et al. Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads[J]. Engineering Fracture Mechanics, 1983, 18(6):1131-1158.
[50] Ewing P D, Williams J G. The fracture of spherical shells under pressure and circular tubes with angled cracks in torsion[J]. International Journal of Fracture, 1974, 10(4):537-544.
[51] Maiti S K, Smith R A. Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field[J]. International Journal of Fracture, 1984, 24(1):5-22.
[52] 高文, 王生楠. T应力对线弹性材料脆性断裂的影响[J]. 西北工业大学学报, 2015, 33(6):928-935.
[53] Ayatollahi M R, Moghaddam M R, Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials[J]. Theoretical & Applied Fracture Mechanics, 2015, 79:70-76.
[54] Marsavina L, Berto F, Negru R, et al. An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling[J]. Theoretical & Applied Fracture Mechanics, 2017, 91:148-154.
[55] Moghaddam M R, Ayatollahi M R, Berto F. Mixed mode fracture analysis using generalized averaged strain energy density criterion for linear elastic materials[J]. International Journal of Solids & Structures, 2017, 120:137-145.
[56] Hou C, Jin X C, Fan X L, et al. A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2019, 100:78-85.
[57] Lazzarin P, Zambardi R. A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches[J]. International Journal of Fracture, 2001, 112(3):275-298.
[58] Theocaris P S, Andrianopoulos N P. The Mises elasticplastic boundary as the core region in fracture criteria[J]. Engineering Fracture Mechanics, 1982, 16(3):425-432.
[59] Theocaris P S, Andrianopoulos N P. The T-criterion applied to ductile fracture[J]. International Journal of Fracture, 1982, 20(4):R125-130.
[60] Khan S M A, Khraisheh M K. Analysis of mixed mode crack initiation angles under various loading conditions[J]. Engineering Fracture Mechanics, 2000, 67(5):397-419.
[61] Ukadgaonker V G, Awasare P J. A new criterion for fracture initiation[J]. Engineering Fracture Mechanics, 1995, 51(2):265-274.
[62] Yan X Q, Zhang Z H, Du S Y. Mixed-mode fracture criteria for the materials with different yield strengths in tension and compression[J]. Engineering Fracture Mechanics, 1992, 42(1):109-116.
[63] 李贺. 岩石断裂力学[M]. 重庆:重庆大学出版社, 1988.
[64] 孙欣, 朱哲明, 谢凌志, 等. 基于SENDB试样的砂岩复合脆性断裂行为研究[J]. 岩石力学与工程学报, 2017, 36(12):2884-2894.
[65] 李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ-Ⅱ压剪复合型断裂准则研究[J]. 岩土工程学报, 2017, 39(4):662-668.
[66] 侯泉林, 程南南, 石梦岩, 等. 不同构造层次岩石变形准则的融合与发展[J]. 岩石学报, 2018, 34(6):1792-1800.
[67] 李智慧, 师俊平, 汤安民. 复杂应力状态下岩石的破坏形式及断裂准则探讨[J]. 固体力学学报, 2015, 36(Supple 1):50-57.
[68] 代继飞. 基于双K准则的多尺寸聚丙烯纤维混凝土断裂韧性研究[D]. 重庆:重庆大学, 2017.
[69] 许斌, 江见鲸. 混凝土Ⅰ-Ⅱ复合型断裂判据研究[J]. 工程力学, 1995, 12(2):13-21.
[70] 黄作宾. 断裂力学基础[M]. 北京:中国地质大学出版社, 1991.