Review

The frontier of high-temperature electrochemical application of mixed-conducting perovskite materials

  • YANG Zhibin ,
  • ZHANG Hao ,
  • JIANG Lin ,
  • GE Ben ,
  • LEI Ze
Expand
  • Research Center of Solid Oxide Fuel Cell, China University of Mining and Technology-Beijing, Beijing 100083, China

Received date: 2019-07-13

  Revised date: 2019-12-11

  Online published: 2020-05-11

Abstract

Energy and environment are the major issues facing all mankind in the 21st century. In recent years mixedconducting perovskite-type materials have received great attention from researchers in the fields of chemistry, materials and physics. These materials can be used in many applications such as oxygen transport membrane (OTM), solid oxide fuel cell (SOFC) and solid oxide electrolysis cell (SOEC), with attractive application prospects in energy conversion, utilization and storage. In this work, the structure, properties and application status of mixed-conducting perovskite materials are reviewed. Hotspots and challenges in current research are summarized, and the future development trends are prospected.

Cite this article

YANG Zhibin , ZHANG Hao , JIANG Lin , GE Ben , LEI Ze . The frontier of high-temperature electrochemical application of mixed-conducting perovskite materials[J]. Science & Technology Review, 2020 , 38(7) : 101 -111 . DOI: 10.3981/j.issn.1000-7857.2020.07.013

References

[1] 林祖镶, 郭祝昆, 孙成文, 等. 快离子导体(固体电解质-基础、材料、应用)[M]. 上海:上海科学技术出版社, 1983.
[2] Yin Q H, Kniep J, Lin Y S. Oxygen sorption and desorption properties of Sr-Co-Fe oxide[J]. Chemical Engineering Science, 2008, 63:2211-2218.
[3] Liu L M, Lee T H, Qiu L, et al. A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, Sr0.5Co0.8Fe0.2O3-δ[J]. Materials Research Bulletin, 1996, 31:29-35.
[4] Mitchell B J, Richardson J W, Murphy C D, et al. Phase stability of SrFeCo0.5Oy under synthesis and annealing conditions[J]. Journal of the European Ceramic Society, 2002, 22:661-671.
[5] Wang H T, Liu X Q, Zheng H, et al. Gelcasting of La0.6Sr0.4Co0.8Fe0.2O3-δ from oxide and carbonate powders[J]. Ceramics International, 1999, 122:113-121.
[6] 江金国, 崔崇. La0.6Sr0.4Co1-yFeyO3系阴极材料制备及表征[J]. 材料科学与工程学报, 2005, 23(5):615-617.
[7] Yang Z B, Yang C H, Jin C, et al. Ba0.9Co0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2011(13):882-885.
[8] Yang Z B, Han M F, Zhu P Y, et al. Ba1-xCo0.9-yFeyNb0.1O3-δ (x=0-0.15, y=0-0.9) as cathode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011(36):9162-9168.
[9] 杨维慎, 王海辉, 丛铀. 一种双相混合导体透氧膜、其制备方法及用途[P]. 中国:CN02124417.0. 2004-12-22.
[10] Chen C S, Burggraaf A J. Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes[J]. Journal of Applied Electrochemistry, 1999, 29:355-360.
[11] Huang K Q, Schroeder M, Goodenough J B. Oxygen permeation through composite oxide-ion and electronic conductors[J]. Electrochemical and Solid-State Letters, 1999, 2:375-378.
[12] Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3(B=V、Cr、Mn、Fe、Co、Ni) in reducing atmosphere[J]. Material Research Bulletin, 1979, 14:649-659.
[13] Moreira D S. Electrical and magnetic properties of manganates with perovskite-related structure[D]. Santa Barbara:University of California, 2002.
[14] Bouwmeester H J M, Burggraaf. A J. Fundamentals of Inorganic Membrane Science and Technology[M]. Amsterdam:Elsevier, 1996.
[15] Petrov A N, Kononchuk O F, Andreev A V, et al. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y[J]. Solid State Ionics, 1995, 80:189-199.
[16] Ishihara T. Perovskite oxide for solid oxide fuel cells[M]. Springer, 2009.
[17] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料与制备[M]. 北京:科技出版社, 2004.
[18] Singhal S C, Kendall K. 高温固体氧化物燃料电池-原理、设计和应用[M]. 韩敏芳, 蒋先锋, 译. 北京:科学出版社, 2007.
[19] Fergus J W. Electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2006, 162:30-40.
[20] Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells[J]. Solid State Ionics, 1992, 52(1-3):165-172.
[21] Zhang X, Robertson M, Petit C D, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164(2):668-677.
[22] Xia C, Liu M. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing[J]. Solid State Ionics, 2001, 144(3-4):249-255.
[23] Huang K Q, Goodenough J B. A solid oxide fuel cell based on Sr- and Mg- doped LaGaO3 electrolyte:The role of a rare-earth oxide buffer[J]. Journal of Alloys and Compounds, 2000, 303-304:454-464.
[24] Ishihara T, Akbay T, Furutani H, et al. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide[J]. Solid State Ionics, 1998, 113-115:585-591.
[25] Trofimenko N, Ullmann H. Co-doped LSGM:Composition-structure-conductivity relations[J]. Solid State Ionics, 1999, 124:263-270.
[26] Zhang X G, Ohara S, Maric R, et al. Interface reactions in the NiO-SDC-LSGM system[J]. Solid State Ionics, 2000, 133:153-160.
[27] Sun C W, Hui R, Roller J. Cathode materials for solid oxide fuel cells:A review[J]. Journal of Solid State Electrochemistry, 2010, 14:1125-1144.
[28] Shao Z P, Haile S M. A high performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431:170-173.
[29] Zhou Q J, Wei T, Shi Y H, et al. Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite ascathode for solid oxide fuel cells[J]. Current Applied Physics, 2012, 12:1092-1095.
[30] Shao Z, Haile S M, Ahn J, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005, 435:795-798.
[31] Singhal S C. Materials for solid oxide fuel cells[R]. China University of Mining&Technology, Beijing, April 15, 2009.
[32] Zhan Z L, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308:844-847.
[33] Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials, 2004, 3:17-27.
[34] McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104:4845-4866.
[35] Plint S M, Connor P A, Tao S W, et al. Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5O3±δ[J]. Solid State Ionics, 2006, 177:2005-2008.
[36] Huang Y, Dass R I, Xing Z, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006, 312:254-257.
[37] Li X, Zhao H L, Zhou X, et al. Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35:7913-7918.
[38] Xiao G L, Jin C, Liu Q, et al. Ni modified ceramic anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2012, 201:43-48.
[39] Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redoxreversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012(24):1439-1443.
[40] Yang Z B, Chen Y, Xu N, et al. Stability investigation for symmetric solid oxide fuel cell with La0.4Sr0.6Co0.2Fe0.7-Nb0.1O3-δ electrode[J]. Journal of the Electrochemical Society, 2015, 162(7):F718-F721.
[41] O'Brein J E, Stoots C M, Herring J S, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production[J]. Journal of Fuel Cell Science and Technology, 2005, 2:156-163.
[42] Hauch A, Ebbesen S D, Jensen S H, et al. Highly efficient high temperature electrolysis[J]. Journal of Materials Chemistry, 2008, 18:2331-2340.
[43] Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007, 32:3253-3257.
[44] 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5):778-787.
[45] 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49:868-871.
[46] Guan J, Minh N, Ramamurthi B. High performance flexible reversible solid oxide fuel cell[R]. Final Technical Report, October 2004-November 2006, GE Global Research Center.
[47] Wang W S, Huang Y Y, Jung S W, et al. A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes[J]. Journal of The Electrochemical Society, 2006, 153:A2066-A2070.
[48] 徐南平. 面向应用过程的陶瓷膜材料设计、制备与应用[M]. 北京:科学出版社, 2005.
[49] Ravi P, Jack C, Bart V H, et al. OTM-An advanced oxygen technology for IGCC[C]. Presented at Gasification Technologies 2002, San Francisco, Oct 30, 2002.
[50] Wagner C. Equations for transport in solid oxides and sulfides of transition metals[J]. Progress in Solid State Chemistry, 1975, 10:3-16.
[51] Dong H, Shao Z P, Xiong G X, et al. Investigation on POM reaction in a new perovskite membrane reaction[J]. Catalysis Today, 2001, 67:3-13.
[52] Liu S, Gavalas G R. Oxygen selective ceramic hollow fiber membranes[J]. Journal of Membrane Science, 2005, 246, 103-108.
[53] Zhu X F, Cong Y, Yang W S. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes[J]. Journal of Membrane Science, 2006, 283:38-44.
[54] Xu N S, Zhao H L, Shen Y N, et al. Structure, electrical conductivity and oxygen permeability of Ba0.6Sr0.4Co1-xTixO3-δ ceramic membranes[J]. Separation and Purification Technology, 2012, 89:16-21.
[55] Tsai C Y, Dixon A G, Ma Y H, et al. Dense perovskite La1-xA'xFe1-yCoyO3-δ(A'=Ba, Sr, Ca) membrane synthesis, applications and characterization[J]. Journal of the American Ceramic Society, 1998, 81(6):1437-1444.
[56] Yang L, Wu Z T, Jin W Q, et al. Structure and oxygen permeability of BaCo0.4Fe0.6-xZrxO3-δ oxide:Effect of the synthesis method[J]. Industrial & Engineering Chemistry Research, 2004, 43:2747-2752.
[57] 杨志宾. Ba1-x(M)xCo0.9-yFeyNb0.1O3-δ材料性能及电化学应用研究[D]. 北京:中国矿业大学(北京), 2012.
[58] Meng B, Wang Z G, Tan X Y, et al. SrCo0.9Sc0.1O3-δ perovskite hollow fibre membranes for air separation at intermediate temperatures[J]. Journal of the European Ceramic Society, 2009, 29:2815-2822.
[59] 陈鑫智. 新型掺杂钙钛矿型混合导体透氧膜材料的研究[D]. 广州:华南理工大学, 2010.
[60] Zhang K, Ran R, Ge L, et al. Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability[J]. Journal of Membrane Science, 2008, 323:436-443.
Outlines

/