[1] 林祖镶, 郭祝昆, 孙成文, 等. 快离子导体(固体电解质-基础、材料、应用)[M]. 上海:上海科学技术出版社, 1983.
[2] Yin Q H, Kniep J, Lin Y S. Oxygen sorption and desorption properties of Sr-Co-Fe oxide[J]. Chemical Engineering Science, 2008, 63:2211-2218.
[3] Liu L M, Lee T H, Qiu L, et al. A thermogravimetric study of the phase diagram of strontium cobalt iron oxide, Sr0.5Co0.8Fe0.2O3-δ[J]. Materials Research Bulletin, 1996, 31:29-35.
[4] Mitchell B J, Richardson J W, Murphy C D, et al. Phase stability of SrFeCo0.5Oy under synthesis and annealing conditions[J]. Journal of the European Ceramic Society, 2002, 22:661-671.
[5] Wang H T, Liu X Q, Zheng H, et al. Gelcasting of La0.6Sr0.4Co0.8Fe0.2O3-δ from oxide and carbonate powders[J]. Ceramics International, 1999, 122:113-121.
[6] 江金国, 崔崇. La0.6Sr0.4Co1-yFeyO3系阴极材料制备及表征[J]. 材料科学与工程学报, 2005, 23(5):615-617.
[7] Yang Z B, Yang C H, Jin C, et al. Ba0.9Co0.7Fe0.2Nb0.1O3-δ as cathode material for intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2011(13):882-885.
[8] Yang Z B, Han M F, Zhu P Y, et al. Ba1-xCo0.9-yFeyNb0.1O3-δ (x=0-0.15, y=0-0.9) as cathode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011(36):9162-9168.
[9] 杨维慎, 王海辉, 丛铀. 一种双相混合导体透氧膜、其制备方法及用途[P]. 中国:CN02124417.0. 2004-12-22.
[10] Chen C S, Burggraaf A J. Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes[J]. Journal of Applied Electrochemistry, 1999, 29:355-360.
[11] Huang K Q, Schroeder M, Goodenough J B. Oxygen permeation through composite oxide-ion and electronic conductors[J]. Electrochemical and Solid-State Letters, 1999, 2:375-378.
[12] Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3(B=V、Cr、Mn、Fe、Co、Ni) in reducing atmosphere[J]. Material Research Bulletin, 1979, 14:649-659.
[13] Moreira D S. Electrical and magnetic properties of manganates with perovskite-related structure[D]. Santa Barbara:University of California, 2002.
[14] Bouwmeester H J M, Burggraaf. A J. Fundamentals of Inorganic Membrane Science and Technology[M]. Amsterdam:Elsevier, 1996.
[15] Petrov A N, Kononchuk O F, Andreev A V, et al. Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y[J]. Solid State Ionics, 1995, 80:189-199.
[16] Ishihara T. Perovskite oxide for solid oxide fuel cells[M]. Springer, 2009.
[17] 韩敏芳, 彭苏萍. 固体氧化物燃料电池材料与制备[M]. 北京:科技出版社, 2004.
[18] Singhal S C, Kendall K. 高温固体氧化物燃料电池-原理、设计和应用[M]. 韩敏芳, 蒋先锋, 译. 北京:科学出版社, 2007.
[19] Fergus J W. Electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2006, 162:30-40.
[20] Eguchi K, Setoguchi T, Inoue T, et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells[J]. Solid State Ionics, 1992, 52(1-3):165-172.
[21] Zhang X, Robertson M, Petit C D, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164(2):668-677.
[22] Xia C, Liu M. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing[J]. Solid State Ionics, 2001, 144(3-4):249-255.
[23] Huang K Q, Goodenough J B. A solid oxide fuel cell based on Sr- and Mg- doped LaGaO3 electrolyte:The role of a rare-earth oxide buffer[J]. Journal of Alloys and Compounds, 2000, 303-304:454-464.
[24] Ishihara T, Akbay T, Furutani H, et al. Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide[J]. Solid State Ionics, 1998, 113-115:585-591.
[25] Trofimenko N, Ullmann H. Co-doped LSGM:Composition-structure-conductivity relations[J]. Solid State Ionics, 1999, 124:263-270.
[26] Zhang X G, Ohara S, Maric R, et al. Interface reactions in the NiO-SDC-LSGM system[J]. Solid State Ionics, 2000, 133:153-160.
[27] Sun C W, Hui R, Roller J. Cathode materials for solid oxide fuel cells:A review[J]. Journal of Solid State Electrochemistry, 2010, 14:1125-1144.
[28] Shao Z P, Haile S M. A high performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431:170-173.
[29] Zhou Q J, Wei T, Shi Y H, et al. Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite ascathode for solid oxide fuel cells[J]. Current Applied Physics, 2012, 12:1092-1095.
[30] Shao Z, Haile S M, Ahn J, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005, 435:795-798.
[31] Singhal S C. Materials for solid oxide fuel cells[R]. China University of Mining&Technology, Beijing, April 15, 2009.
[32] Zhan Z L, Barnett S A. An octane-fueled solid oxide fuel cell[J]. Science, 2005, 308:844-847.
[33] Atkinson A, Barnett S, Gorte R J, et al. Advanced anodes for high-temperature fuel cells[J]. Nature Materials, 2004, 3:17-27.
[34] McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004, 104:4845-4866.
[35] Plint S M, Connor P A, Tao S W, et al. Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5O3±δ[J]. Solid State Ionics, 2006, 177:2005-2008.
[36] Huang Y, Dass R I, Xing Z, et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006, 312:254-257.
[37] Li X, Zhao H L, Zhou X, et al. Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35:7913-7918.
[38] Xiao G L, Jin C, Liu Q, et al. Ni modified ceramic anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2012, 201:43-48.
[39] Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redoxreversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012(24):1439-1443.
[40] Yang Z B, Chen Y, Xu N, et al. Stability investigation for symmetric solid oxide fuel cell with La0.4Sr0.6Co0.2Fe0.7-Nb0.1O3-δ electrode[J]. Journal of the Electrochemical Society, 2015, 162(7):F718-F721.
[41] O'Brein J E, Stoots C M, Herring J S, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production[J]. Journal of Fuel Cell Science and Technology, 2005, 2:156-163.
[42] Hauch A, Ebbesen S D, Jensen S H, et al. Highly efficient high temperature electrolysis[J]. Journal of Materials Chemistry, 2008, 18:2331-2340.
[43] Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources[J]. International Journal of Hydrogen Energy, 2007, 32:3253-3257.
[44] 张文强, 于波, 陈靖, 等. 高温固体氧化物电解水制氢技术[J]. 化学进展, 2008, 20(5):778-787.
[45] 刘明义, 于波, 徐景明. 固体氧化物电解水制氢系统效率[J]. 清华大学学报(自然科学版), 2009, 49:868-871.
[46] Guan J, Minh N, Ramamurthi B. High performance flexible reversible solid oxide fuel cell[R]. Final Technical Report, October 2004-November 2006, GE Global Research Center.
[47] Wang W S, Huang Y Y, Jung S W, et al. A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes[J]. Journal of The Electrochemical Society, 2006, 153:A2066-A2070.
[48] 徐南平. 面向应用过程的陶瓷膜材料设计、制备与应用[M]. 北京:科学出版社, 2005.
[49] Ravi P, Jack C, Bart V H, et al. OTM-An advanced oxygen technology for IGCC[C]. Presented at Gasification Technologies 2002, San Francisco, Oct 30, 2002.
[50] Wagner C. Equations for transport in solid oxides and sulfides of transition metals[J]. Progress in Solid State Chemistry, 1975, 10:3-16.
[51] Dong H, Shao Z P, Xiong G X, et al. Investigation on POM reaction in a new perovskite membrane reaction[J]. Catalysis Today, 2001, 67:3-13.
[52] Liu S, Gavalas G R. Oxygen selective ceramic hollow fiber membranes[J]. Journal of Membrane Science, 2005, 246, 103-108.
[53] Zhu X F, Cong Y, Yang W S. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δ membranes[J]. Journal of Membrane Science, 2006, 283:38-44.
[54] Xu N S, Zhao H L, Shen Y N, et al. Structure, electrical conductivity and oxygen permeability of Ba0.6Sr0.4Co1-xTixO3-δ ceramic membranes[J]. Separation and Purification Technology, 2012, 89:16-21.
[55] Tsai C Y, Dixon A G, Ma Y H, et al. Dense perovskite La1-xA'xFe1-yCoyO3-δ(A'=Ba, Sr, Ca) membrane synthesis, applications and characterization[J]. Journal of the American Ceramic Society, 1998, 81(6):1437-1444.
[56] Yang L, Wu Z T, Jin W Q, et al. Structure and oxygen permeability of BaCo0.4Fe0.6-xZrxO3-δ oxide:Effect of the synthesis method[J]. Industrial & Engineering Chemistry Research, 2004, 43:2747-2752.
[57] 杨志宾. Ba1-x(M)xCo0.9-yFeyNb0.1O3-δ材料性能及电化学应用研究[D]. 北京:中国矿业大学(北京), 2012.
[58] Meng B, Wang Z G, Tan X Y, et al. SrCo0.9Sc0.1O3-δ perovskite hollow fibre membranes for air separation at intermediate temperatures[J]. Journal of the European Ceramic Society, 2009, 29:2815-2822.
[59] 陈鑫智. 新型掺杂钙钛矿型混合导体透氧膜材料的研究[D]. 广州:华南理工大学, 2010.
[60] Zhang K, Ran R, Ge L, et al. Systematic investigation on new SrCo1-yNbyO3-δ ceramic membranes with high oxygen semi-permeability[J]. Journal of Membrane Science, 2008, 323:436-443.