The middle and upper atmosphere plays an important role in the solar-terrestrial space environment. It is also an important field for the study of the coupling of the thermosphere, the ionosphere and the magnetosphere. A great amount of research work in this respect was carried out both at home and abroad. With the bibliometric analysis method, this paper analyzes the development process, the main countries concerned, the key institutions, the funding and the research hotspots related with the middle and upper atmospheric density. Through the publication data analysis, it can be concluded that the annual publication in this field shows a rising trend of fluctuation. The overall global publication trend is greatly affected by the United States, Germany, China, France and the United Kingdom. The United States shares a large number of R & D institutions in this field. The University of Colorado and the National Aeronautics and Space Administration have a great scientific research capability. They have a very close scientific research cooperation with each other. Chinese institutions started related scientific researches later, but with a very rapid development. The numbers of research teams, the research achievements, and the funds have increased significantly. Important projects have been implemented, such as Shenzhou spacecraft, APOD (Atmospheric density and Precise Orbit Determination) satellites, Tiangong laboratory, and meteorological satellites for the density detection, have obtained a large amount of high-precision measured data. The density detection by multiple methods, the establishment of high-precision atmospheric models and the prediction of atmospheric density are the current research hotspots of middle and upper atmosphere researches.
[1] Emmert J T. Thermospheric mass density:A review[J]. Advances in Space Research, 2015(56):773-824.
[2] Barlier F, Berger C, Falin J L, et al. Thermospheric model based on satellite drag data[J]. Annicae geophysales, 1978, 34(1):9-24.
[3] Liu H, Lühr H, Henize V, et al. Global distribution of the thermospheric total mass density derived from CHAMP[J/OL]. Journal of Geophysical Research:Space Physics, 2005, 110(4), https://doi.org/10.1029/2004JA010741.
[4] Xu J Y, Wang W B, Lei J H, et al. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits[J/OL]. Journal of Geophysical Research Space Physics, 2011, 116(2), https://doi.org/10.1029/2010JA015995.
[5] Bruinsma S, Tamagnan D. Atmospheric densities derived from CHAMP/STAR accelerometer observations[J]. Planetary and Space Science, 2004(52):297-312.
[6] 陈光明, 符养, 薛震刚, 等.利用星载加速度计数据反演高层大气密度的方法[J]. 解放军理工大学学报(自然科学版), 2010, 11(3):371-376.
[7] Osborne J J, Harris I L, Roberts G T, et al. Satellite and rocket-borne atomic oxygen sensor techniques[J]. Review of Scientific Instruments, 2001, 72(11):4025-4041.
[8] Clemmons J H, Hecht J H, Salem D R, et al. Thermospheric density in the Earth's magnetic cusp as observed by the Streak mission[J]. Geophysical Research Letters, 2008(35):24103.
[9] 秦国泰, 邱时彦, 贺爱卿, 等. 神舟2号大气密度探测器的探测结果(Ⅰ)日照和阴影区域热层大气密度变化[J]. 空间科学学报, 2002, 22(2):136-141.
[10] 秦国泰, 邱时彦, 贺爱卿, 等."神舟3号" 运行高度上大气密度的变化[J].空间科学学报, 2004(4):269-74.
[11] 李勰, 徐寄遥, 唐歌实, 等. APOD卫星大气密度数据处理与标校[J]. 地球物理学报, 2018, 61(9):3567-3576.
[12] Tang G S, Li X, Cao J F, et al. APOD mission status and preliminary results[J]. Science China Earth Sciences, 2020, 63(2):257-266.
[13] Offermann D. Composition variations in the lower thermosphere[J]. Journal of Geophysical Research, 1974, 79(28):4281-4293.
[14] 陈华姣, 秦国泰, 李永平, 等. 天宫一号大气密度探测数据与模式的比较分析[J]. 载人航天, 2013(6):38-42.
[15] 李永平, 朱光武, 秦国泰, 等. 不同高度和不同地磁扰动期间热层大气密度模式值与探测值的显著差异[J]. 地球物理学报, 2014, 57(11):3703-3714.
[16] 李永平, 朱光武, 秦国泰, 等. 地磁扰动期间热层大气N2数密度异常增变[J]. 中国科学(技术科学), 2014, 44(8):883-889.
[17] Guotai Q. Disturbance of the upper atmospheric density during August 24, 2005 severe geomagnetic storm event[J]. Chinese Journal of Space Science, 2008, 28(2):137-141
[18] 李永平, 孙越强, 王馨悦, 等. 两分两至点热层大气密度变化[J]. 科技导报, 2019, 37(6):104-113.
[19] Fleming E L, Chandra S, Burrage M D, et al. Climatological mean wind observations from the UARS high-resolution doppler imager and wind imaging interferometer:Comparison with current reference models[J]. Journal of Geophysical Research Atmospheres. 1996, 101(6):10455-10473.
[20] 任海根, 李盛阳. 天宫二号对地观测应用研究进展[J]. 载人航天, 2019, 25(6):825-833.
[21] 陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013(4):71-75.
[22] 李大耀. 火箭探空活动的领域和价值[J]. 中国航天, 1992(12):12-13.
[23] 姜秀杰, 刘波, 于世强, 等. 探空火箭的发展现状及趋势[J]. 科技导报, 2009, 27(23):101-110.
[24] Bowman B R, Tobiska W K, Marcos F A, et al. The JB2006 empirical thermospheric density model[J]. Journal of Atmospheric & Solar Terrestrial Physics, 2008, 70(5):774-793.
[25] Berger C, Biancale R, Ill M, et al. Improvement of the empirical thermospheric model DTM:DTM94-A comparative review of various temporal variations and prospects in space geodesy applications[J]. Journal of Geodesy, 1998, 72(3):161-178.
[26] Hedin A E. A Revised thermospheric model based on mass spectrometer and incoherent scatter data:MSIS-83[J]. Journal of Geophysical Research, 1983, 88(12):10170.
[27] Hedin A E. MSIS-86 Thermosphericmodel[J]. Journal of Geophysical Research Space Physics, 1987, 92(5):4649-4662.
[28] Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. Journal of Geophysical Research:Space Physics, 1991, 96(2):1159-1172.
[29] PiconeJ M. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. Journal of Geophysical Research, 2002, 107(12):1468.