Combined cycle propulsion technology is an organic combination of multiple propulsion technologies from the aspects of thermal cycle, structural configuration and so on, which has the characteristics of wide flight envelope and better comprehensive performance. In this paper we summarize the development history of foreign combined cycle engines, then introduce several mainstream typical combined cycle engines. We also discuss and summarize the development trend and key technologies of combined cycle propulsion technology. Finally we propose some suggestions for technology development.
ZHANG Shengsheng
,
ZHEGN Xiong
,
Lü Ya
,
QIAO Xiaohui
,
ZHANG Yong
. Research progress of oversea combined cycle propulsion technology[J]. Science & Technology Review, 2020
, 38(12)
: 33
-53
.
DOI: 10.3981/j.issn.1000-7857.2020.12.004
[1] Hank J M, Franke M E. TSTO reusable launch vehicles using air breathing propulsion[R]. Sacramento:AIAA, 2006.
[2] Pryor D E, Hyde E H, Escher W J D. Development of a 12-thrust chamber kerosene/oxygen primary rocket subsystem for an early (1964) air-augmented rocket ground test system[C]//9th International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk:AIAA, 1999.
[3] Hyde E H. Marquardt's Mach 4.5 supercharged ejector ramjet high-performance aircraft engine project[C]//Aiaa/asme/sae/asee Joint Propulsion Conference&Exhibit. Las Vegas:AIAA, 2013.
[4] Siebenhaar A, Bujman M J. The strutjet engine:The overlooked option for space launch[C]//Joint Propulsion Conference&Exhibit. San Diego:AIAA, 1995.
[5] Andrew K. Summary of rocketdyne engine A5 rocket based combined cycle testing[J/OL].[2020-03-20]. https://ntrs.nasa.gov/search.jsp?R=199900085102020-05-17T06:37:40+00:00Z.
[6] 张蒙正, 路媛媛. 火箭冲压组合动力系统研发再思考[J]. 推进技术, 2018, 39(10):2219-2226.
[7] 张蒙正, 李斌, 王君, 等. 关于RBCC动力系统的思考[J]. 火箭推进, 2013, 39(1):1-7.
[8] 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1):1-9.
[9] 刘洋, 何国强, 刘佩进, 等. RBCC组合循环推进系统研究现状和进展[J]. 固体推进技术, 2009, 32(3):288-293.
[10] 陈健, 王振国. 火箭基组合循环(RBCC)推进系统研究进展[J]. 飞航导弹, 2007(3):36-45.
[11] Jason E Q. ISTAR:Project status and ground test engine design[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville:AIAA, 2003.
[12] Japan aerospace exploration agency[EB/OL].[2019-10-04]. http://www.JAXA.gov.jp.
[13] Johan S. LAPCAT:An EC funded project on sustained hypersonic flight[C]//57th International Astronautical Congress. Valencia:AIAA, 2006.
[14] 秦飞, 吕翔, 刘佩进, 等. 火箭基组合推进研究现状与前景[J]. 推进技术, 2010, 31(6):660-665.
[15] Peter L. SR-71 propulsion system P&W J58 engine[ED/OL].[2019-10-04]. http://www.enginehistory.org/Convention/2013/SR-71PropulsionSystem-2013.pdf.
[16] McNelis N, Bartolotta P. Revolutionary turbine accelerator (RTA) demonstrator[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua:AIAA, 2005.
[17] Mamplata C, Tang M. Technical approach to TurbineBased Combined Cycle:FaCET[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver:AIAA, 2009.
[18] Skunk Works reveals Mach 6.0 SR-72 concept[R].[2019-10-04]. http://www.Flightglobal.com/news/articles.
[19] 刘鹏, 宁国栋. 从SR-72项目看美国高超声速平台研究现状[J]. 飞航导弹, 2013(12):3-9.
[20] Take two for hypersonic combined cycle propulsion[N/OL].[2019-10-30]. http://Aviationweek.com.
[21] 陈敏. 涡轮/冲压组合动力技术发展研究[C]//航空科学技术学科发展报告. 北京:中国航空学会, 2013:84-99.
[22] 刘红霞, 梁春华, 孙明霞. 美国高超声速涡轮基组合循环发动机的进展及分析[J]. 航空发动机, 2017, 4(43):96-102.
[23] Miyagi H, Kimura H, Kiahi K. Combined cycle engine research in Japanese HYPR program[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland:AIAA, 1998.
[24] Lanshin A L, Sosounov V A. Russian aerospace combined propulsion system research and development program (ORYOL2-1):Progress review[C]//Space Plane and Hypersonic Systems and Technology Conference. Norfolk:AIAA, 1996.
[25] Lilley J S, Kirkham B G, Eadon C A, et al. Experimental evaluation of an air turbo ramjet[C]//30th Joint Propulsion Conference and Exhibit. Indianapolis:AIAA, 1994.
[26] 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进, 2008, 34(6):31-35.
[27] Varvill R, Bond A A. comparison of propulsion concepts for SSTO reusable launchers[J]. Journal of the British Interplanetary Society, 2003, 56:108-117.
[28] Balepin V V, Maita M, Murrthy S N B. Third way of development of single-stage-to orbit propulsion[J]. Journal of Propulsion and Power, 2000, 16:99-104.
[29] Carter P H. Mass injection and precompressor cooling engines analyses[C]//8th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis:AIAA, 2002.
[30] Sato T, Tanatsugu N, Naruo Y, et al. Development study on ATREX engine[J]. Acta Astronautica, 2000, 47(11):799-808.
[31] Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies. Norfolk:AIAA, 2003.
[32] 郑佳琳. 预冷发动机热力循环及调节规律研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[33] 孙广勃. 霍托尔的发动机揭秘[J]. 中国航天, 1994(1):37-40.
[34] James E, Helen W. SABRE technology development[C]//67th Tnternational Astronautical Congress (IAC). Guadalajara:AIAA, 2016.
[35] 邓帆, 谭辉俊, 董昊. 预冷组合动力高超声速空天飞机关键技术研究进展[J]. 推进技术, 2018, 39(1):1-13.
[36] Wang Z G,Wang Y,Zhang J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel haet transfer[J]. Aerospace Science and Technology, 2014(39):31-39.
[37] Bulman M J, Siebenhaar A. Combined cycle propulsion:Areojet innovations for practical hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco:AIAA, 2011.
[38] 罗美千子. Trijet组合循环发动机排气系统数值仿真与分析[D]. 南京:南京航空航天大学, 2015.
[39] 郭琦, 李兆庆. 国外脉冲爆震发动机技术研究[J]. 2005, 18(3):59-62.
[40] 姜晓莲, 王斌. 浅析未来航空发动机技术的发展[J]. 航空科学技术, 2010(2):10-12.
[41] 黄俊, 廖忠权. 脉冲爆震发动机的应用研究[J]. 飞机设计, 2006(4):58-63.
[42] 郑庆雄, 陈辅群, 廉小纯. 空天机复合循环推进技术新概念研究——液化空气循环在其中的应用[J]. 推进技术, 1992(2):1-6.
[43] 张鹏峰. 国外RBCC组合循环发动机发展趋势及关键技术[J]. 推进技术, 2013(8):68-71.
[44] Roger L, Alan B. The skylon project[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco:AIAA, 2011.