The history of hypersonic propulsion facilities and tasks are briefly reviewed in this paper, the operating principle, main structures and basic parameters of these reclassified facilities are also surveyed, including direct-connect supersonic combustion test facility, combustion-heated high temperature tunnel, arc-heated scramjet test facility, high enthalpy shockwave facility and combustion-heated impulse tunnel. After an analysis of the characteristics of different facilities, it is pointed out that the combustion-heated impulse tunnel is the ideal facility for aero-propulsion integration test.
WU Yingchuan
,
HE Yuanyuan
,
ZHANG Xiaoqing
,
MAO Xiongbing
. An overview of hypersonic aero-propulsion integration test facilities[J]. Science & Technology Review, 2020
, 38(12)
: 96
-102
.
DOI: 10.3981/j.issn.1000-7857.2020.12.008
[1] Marren D, Lewis M, Maurice L Q. Experimentation, test, and evaluation requirements for future airbreathing hypersonic systems[J]. Journal of Propulsion and Power, 2001, 17(6):1361-1365.
[2] Rogers R, Capriotti D, Guy R. Experimental supersonic combustion research at NASA Langley[C]//20th AIAA advanced measurement and ground testing technology conference. Albuquerque, NM:AIAA, 1998.
[3] Haas J. Reactivation study for NASA Lewis Research Center's hypersonic tunnel facility[C]//23rd Joint Propulsion Conference. San Diego:AIAA, 1987.
[4] Andrews E. Scramjet development and testing in the United States[C]//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Kyoto:AIAA, 2001.
[5] Witte D, Huebner L, Trexler C, et al. Propulsion-airframe integration test techniques for hypersonic airbreathing configurations at Langley Research Center[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville:AIAA, 2003.
[6] Tank M H. National AERO-Space Plane (NASP) Program[C]//NASA Space Transportation Propulsion Technology Symposium. Washington DC:NASA, 1991:383-407.
[7] Walter C E, Scott D H, Charles E C. Aerodynamic database development for the Hyper-X airframe-integrated scramjet propulsion experiments[J]. Journal of Spacecraft And Rockets, 2001, 38(6):803-810.
[8] Scott D H, William C W, Walter C E. Hyper-X research vehicle experimental aerodynamics test program overview[J]. Journal of Spacecraft and Rockets, 2001, 38(6):828-835.
[9] Shelly M F, Charles R M. Hyper-X Mach 7 scramjet design, ground test and flight results[R]. Capua:AIAA, 2005.
[10] Northam G B, Andrews E, Guy W, et al. An overview of hypersonic propulsion research at NASA Langley Research Center[R]. Hampton, VA:Nasa Langley Research Center, 2006.
[11] Hass N, Shih A, Rogers R. Mach 12&15 Scramjet Test Capabilities of the HYPULSE Shock-Expansion Tunnel[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Rero, Nevada:AIAA, 2005.
[12] Holden M S, Wadhams T P, MacLean M. Experimental studies in the LENS supersonic and hypersonic tunnels for hypervelocity vehicle performance and code validation[C]//Aiaa International Space Planes & Hypersonic Systems & Technologies Conference. Dayton:AIAA, 2008.
[13] Joseph M H, James S M, Richard C M. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton:AIAA, 2008.
[14] Foelsche R O, Leylegian J C, Betti A A. Progress on the development of a freeflight atmospheric scramjet test technique[C]//13th International Space Planes and Hypersonics Systems and Technologies. Capua:AIAA, 2005.
[15] 朱超, 姚峰, 陈德江, 等. 电弧风洞真空氩气起弧技术研究[J]. 试验流体力学, 2014, 28(2):69-72.
[16] 姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报, 2012, 44(5):824-831.
[17] 乐嘉陵, 刘伟雄, 贺伟, 等. 脉冲燃烧风洞及其在火箭和超燃发动机研究中的应用[J]. 实验流体力学, 2005, 19(1):1-10.
[18] Le J L, Liu W X, He W. Pulse combustion facility and its preliminary application in scramjet research[C]//11th International Conference on Methods of Aerophysical Research. Novosibirsk:Publishing House《Noparel》, 2002.
[19] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260.
[20] 贺元元, 贺伟, 张小庆, 等. 燃烧加热脉冲风洞气动/推进一体化试验研究[J]. 推进技术, 2017, 38(8):1741-1746.
[21] 贺伟, 高昌, 张小庆, 等. 脉冲燃烧风洞测力天平研制与应用[J]. 实验流体力学, 2016, 30(4):66-70.
[22] 吴颖川, 贺元元, 张小庆, 等. 超燃冲压发动机推力性能评估方法[J]. 推进技术, 2019, 40(1):26-32.