To enhance the management of civil aviation flight safety, a set of factors influencing unsafe behavior is determined through literature analysis and stakeholder survey. Then a network model of relationship among these factors is built by applying social network analysis. Its node attributes, core-edge analysis, structural feature, influence and hierarchical clustering are investigated.The result shows that the key unsafe behavior influencing factor nodes can form a reaction chain, which can in turn connect with others into a high-risk behavior network. Among them, the key unsafe behavior influence factors include job burnout, safety supervision, and business skills proficiency. There is a chain of behavioral reactions, including "the level of knowledge is low- procedures are not strict- civil aviation flight is unsafe", etc. Some kinds of behavior such as job burnout, stress, etc. can serve as bridge nodes in the network of factors influencing unsafe behavior.
WANG Wenke
,
ZHANG Yan
,
ZHAO Yuanyi
,
LIU Xinyue
. On the relationship among various influence factors of unsafe civil aviation flight behavior based on social network analysis[J]. Science & Technology Review, 2020
, 38(12)
: 149
-158
.
DOI: 10.3981/j.issn.1000-7857.2020.12.014
[1] 中国民用航空局. 民航机场生产统计公报[Z]. 中国民用航空局, 2006-2015.
[2] 张翔. 我国航空经济发展现状与前景[J]. 现代经济信息, 2019(5):396.
[3] 鲍梦瑶. 国际民航组织适航标准与中国民航适航规章的关联[J]. 科技导报, 2019, 37(5):17-24.
[4] 崔振新, 赵庆涛. 民航旅客客舱不安全行为机理研究[J]. 中国民航大学学报, 2018, 36(2):45-49.
[5] 郭鹏. 利用REASON模型浅析航空不安全事件[J]. 民航管理, 2019(4):85-87.
[6] Oliver N, Calvard T, Kristina P. Safe limits, mindful organizing and loss of control in commercial aviation[J]. Safety Science, 2019, 120:772-780.
[7] 孙瑞山, 赵宁, 李敬强. 民航飞行员人格特质与行为安全的理论分析[J]. 人类工效学, 2015, 21(3):50-54.
[8] 曾佩佩, 杨洁. 民航机务人员个体特征因素对安全行为的影响[J]. 中国民航大学学报, 2016, 34(4):36-40.
[9] 凡勇, 陈毓夔. 飞机维修中人的不安全行为[J]. 中国民用航空, 2014(3):56-57.
[10] 陈芳, 范丹红, 刘凯凯. 民航机务维修人员不安全行为干预策略研究[J]. 中国安全科学学报, 2016, 26(7):18-22.
[11] Jin E Z. Network analysis of ‘In-flight safety’ using big data[J]. International Journal of Tourism Management and Sciences, 2019, 34(3):263-279.
[12] 万健, 夏正洪, 王剑辉, 等. 基于QAR超限事件的民航飞行安全风险评价方法[J]. 科技导报, 2019, 11:101-108.
[13] 罗帆, 杨智. 交通流量增长下的空中管制安全风险预警及阈值确定[J]. 科技导报, 2012, 30(4):61-66.
[14] McDonald N, Callari T C, Baranzini D, et al. A Mindful Governance model for ultra-safe organisations[J]. Safety Science, 2019, 120:753-763.
[15] Causse M, Chua Z K, Rémy F. Influences of age, mental workload, and flight experience on cognitive performance and prefrontal activity in private pilots:a fNIRS study[J]. Scientific Reports, 2019, 9(1):2045-2322.
[16] Kelly D, Marina E. An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017[J]. Journal of Safety Research, 2019, 69:155-165.
[17] 张攀科, 罗帆. 通用航空安全监管演化博弈的系统动力学仿真[J]. 中国安全科学学报, 2019, 29(4):43-50.
[18] Ni X M, Wang H W, Che C C, et al. Civil aviation safety evaluation based on deep belief network and principal component analysis[J]. Safety Science, 2019, 112:90-95.
[19] 韩静茹. 以风险管理为导向的航空安全信息管理探讨[J]. 民航学报, 2018, 2(5):50-53.
[20] Collins J W, Wisz P. Training in robotic surgery, replicating the airline industry. How far have we come[J]. World Journal of Urology, 2019, doi:10.1007/s00345-019-02976-4.
[21] 佀庆民, 王延霞, 李学伟, 等. 国家通用航空业发展安全保障体系建设研究[J]. 中国民航飞行学院学报, 2019, 30(5):10-14.
[22] Rao A H, Marais K. A state-based approach to modeling general aviationaccidents[J]. Reliability Engineering & System Safety, 2020, 193:106670.
[23] Darr S, Ricks W, Lemos K A. Safer systems:A nextgenaviationsafety strategic goal[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(6):9-14.
[24] Van G, Krijgsveld K L, Klauke N, et al. Aeroecology meetsaviationsafety:Early warning systems in Europe and the Middle East prevent collisions between birds and aircraft[J]. Ecography, 2019, 42(5):899-911.
[25] 李书全, 冯雅清, 胡松鹤, 等. 基于社会网络的建筑施工不安全行为关系研究[J]. 中国安全科学学报, 2017, 27(6):7-12.
[26] Anderson C. Characterizing the structure of operating room staffing using social network analysis[J]. Nursing Research, 2011, 60(6):378-385.