Maritime Powers

Technical progress of marine renewable energy in China

  • LIU Weimin ,
  • LIU Lei ,
  • CHEN Fengyun ,
  • MA Changlei ,
  • GE Yunzheng ,
  • PENG Jingping
Expand
  • 1. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
    2. National Ocean Technology Center, Tianjin 300112, China

Received date: 2020-06-18

  Revised date: 2020-07-16

  Online published: 2020-08-10

Abstract

This paper reviews the technical progress of power generation devices of tidal energy, tidal current energy, wave energy, ocean thermal energy and salinity gradient energy in China. The 4.1 MW Jiangxia tidal power station, 650 kW tidal current energy power station of Zhejiang University, 500 kW wave energy power station of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences and 15 kW ocean thermal energy power station of First Institute of Oceanography, Ministry of Natural Resources are compared with the advanced marine energy equipments abroad in terms of the scale and the key technical parameters. The results show that the energy conversion efficiency of power generation is close to the international advanced level, but there are still some gaps in the installed power, sea trial time and device reliability. Then this paper suggests that the research and development of common technology of marine energy devices should be carried out at the same time of developing the key technology, so as to improve the reliability and safety of marine energy equipments. Researches on green technology and comprehensive utilization of marine energy should be carried out actively to promote the transformation of key technologies of marine energy, and to promote industrialization of marine energy equipments.

Cite this article

LIU Weimin , LIU Lei , CHEN Fengyun , MA Changlei , GE Yunzheng , PENG Jingping . Technical progress of marine renewable energy in China[J]. Science & Technology Review, 2020 , 38(14) : 27 -39 . DOI: 10.3981/j.issn.1000-7857.2020.14.002

References

[1] 夏登文, 康健. 海洋能开发利用词典[M]. 北京:海洋出版社, 2014.
[2] 国家海洋局. 中国海洋统计年鉴[R]. 北京:国家海洋局, 2017.
[3] 国家海洋局. 海岛统计调查公报[R]. 北京:国家海洋局, 2015.
[4] European Commission. Blue energy:Action needed to deliver on the potential of ocean energy in European seas and oceans by 2020 and beyond[R]. Brussels:European Commission, 2014.
[5] Li Y, Pan D Z. The ebb and flow of tidal barrage development in Zhejiang Province, China[J]. Renewable & Sustainable Energy Reviews, 2017, 80:380-389.
[6] Li Y J, Liu H W, Lin Y G, et al. Design and test of a 600-kW horizontal-axis tidal current turbine[J]. Energy, 2019, doi:10.1016/j.energy.2019.05.154.
[7] 高效水平轴650kW海流能发电机组优化后再运行-单机功率最大![EB/OL]. (2020-01-19)[2020-04-08]. http://me.zju.edu.cn/mecn/2020/0119/c6200a1957587/page.htm.
[8] Technology Collaboration Programme on Ocean Energy Systems. OES annual report[R]. Lisbon:Ocean Energy Systems (OES), 2019.
[9] Technology Collaboration Programme on Ocean Energy Systems. OES annual report[R]. Lisbon:Ocean Energy Systems (OES), 2018.
[10] "南海兆瓦级波浪能示范工程建设"项目首台500kW鹰式波浪能发电装置"舟山号"正式交付[EB/OL]. [2020-07-01]. http://www.giec.cas.cn/ttxw2016/202007/t20200701_5614043.html.
[11] Chen F Y, Liu L, Peng J P, et al. Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode[J]. Energy, 2019, 183:497-503.
[12] Huckerby J, Jeffrey H, Jay B. An international vision for ocean energy[R]. Lisbon:Ocean Energy Systems (OES), 2011.
[13] 张宪平. 海洋潮汐能发电技术[J]. 电气时代, 2011(10):30-32.
[14] 石洪源, 郭佩芳. 我国潮汐能开发利用前景展望[J]. 海岸工程, 2012(1):76-84.
[15] Pang M Y, Tang S J, Zhang L X, et al. Integrated emergy and economic evaluation of a case tidal power plant in China[J]. Journal of Cleaner Production, 2018, 182:38-45.
[16] 王传崑. 我国潮汐能开发利用的成就及其有关问题[J]. 海洋开发与管理, 1989(2):14-19.
[17] 张俊彪, 缪斌, 许雪峰, 等. 海湾内外的动态水位差模拟研究——一种全新的潮汐能开发方式的探索[J]. 海洋技术, 2012, 31(4):83-86, 90.
[18] 赵建春, 陈国海, 周鹏飞. 动态潮汐能工程对区域海洋水动力环境的影响分析[J]. 太阳能学报, 2015, 36(12):3108-3114.
[19] Wikipedia. List of tidal power stations[EB/OL]. [2020-04-08]. http://en.volupedia.org/wiki/List_of_tidal_power_stations.
[20] 中国电力出版社. 中国水力发电年鉴[R]. 北京:中国电力出版社, 2016.
[21] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14):1-12.
[22] Park Y H. Analysis of characteristics of dynamic tidal power on the west coast of Korea[J]. Renewable and Sustainable Energy Reviews, 2017, 68:461-474.
[23] Charlier R H. Forty candles for the Rance River TPP tides provide renewable and sustainable power generation[J]. Renewable & Sustainable Energy Reviews, 2007, 11(9):2032-2057.
[24] I. N. 尤萨切夫, 赵秋云. 世界潮汐发电发展前景展望[J]. 水利水电快报, 2009, 30(10):37-41.
[25] 邹健健, 赵丽萍. 潮汐能发电电价的敏感性分析[J]. 科技资讯, 2009(8):120-121.
[26] 国家海洋技术中心. 中国海洋能技术进展2014[M]. 北京:海洋出版社, 2014:28-32.
[27] Gao Y B, Li Y, Ma C L. China funds development of new tidal current energy devices[J]. Sea Technology, 2011, 52(4):45-46.
[28] 罗续业, 朱永强, 杨名舟, 等. 中国海洋能政策研究[M]. 北京:中国水利水电出版社, 2016:65.
[29] 马舜, 李伟, 刘宏伟, 等. 25kW独立运行式水平轴潮流能发电系统[J]. 电力系统自动化, 2010(14):23-27.
[30] Xu Q K, Liu H W, Lin Y G, et al. Development and experiment of a 60 kW horizontal-axis marine current power system[J]. Energy, 2015, 88:149-156.
[31] 王榕榕. 海流发电"点亮"海岛-高效水平轴海流发电系列装备与"海能海用"系列研发记[N]. 中国海洋报, 2019-2-13(3).
[32] 刘伟民, 麻常雷, 陈凤云, 等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1):1-17.
[33] Macenri J, Reed M, Thiringer T. Power quality performance of the tidal energy converter, SeaGen[C]//ASME International Conference on Ocean. Rotterdam, The Netherlands:ASME, 2011.
[34] Fraenkel P L. Tidal current energy technologies[J]. Ibis, 2006, 148(Suppl 1):145-151.
[35] Westwood A. SeaGen installation moves forward[J]. Renewable Energy Focus, 2008, 9(3):26-27.
[36] 陈雪梦. 基于BEM-CFD模型的水平轴潮流能发电装置叶轮优化研究[D]. 杭州:浙江大学, 2018.
[37] 白杨, 杜敏, 周庆伟, 等. 潮流能发电装置现状分析[J]. 海洋开发与管理, 2016, 33(3):57-63.
[38] Pontedi Archimede International[EB/OL]. [2020-04-18]. http:/www.pontediarchim ede.com.
[39] 张亮, 李新仲, 耿敬, 等. 潮流能研究现状2013[J]. 新能源进展, 2013(1):57-72.
[40] Technology Collaboration Programme on Ocean Energy Systems. OES annual report[R]. Lisbon:Ocean Energy Systems (OES), 2017.
[41] 顾煜炯, 谢典, 耿直. 波浪能发电技术研究进展[J]. 电网与清洁能源, 2016, 32(5):83-87.
[42] 王锰, 李蒙, 夏增艳, 等. 浮力摆式波浪能发电装置模型试验[J]. 海洋技术, 2013(1):83-86.
[43] 唐泽成. 点吸收式波浪能发电装置水动力性能研究与优化[D]. 杭州:浙江大学, 2019.
[44] 王项南, 贾宁, 薛彩霞, 等. 关于我国海洋可再生能源产业化发展的思考[J]. 海洋开发与管理, 2019, 36(12):14-18.
[45] 盛松伟, 王坤林, 吝红军, 等. 100 kW鹰式波浪能发电装置"万山号"实海况试验[J]. 太阳能学报, 2019, 40(3):709-714.
[46] 洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7):1886-1899.
[47] 吴金明. 鸭式波浪能转换单元的锁定控制与阵列布局设计的研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[48] 杨景. 漂浮摆波浪能开发装置关键技术的研究[D]. 杭州:浙江大学, 2018.
[49] 胡聪, 毛海英, 尤再进, 等. 中国海域波浪能资源分布及波浪能发电装置适用性研究[J]. 海洋科学, 2018, 42(3):144-150.
[50] 刘延俊, 贺彤彤. 波浪能利用发展历史与关键技术[J]. 海洋技术学报, 2017, 36(4):76-81.
[51] 李琳娜, 史宏达, 董晓晨. 波浪能研究发展概况[J]. 中国水运, 2017, 17(7):256-257.
[52] 郑明月. 振荡浮子式波浪能发电技术研究[D]. 广州:华南理工大学, 2017.
[53] Xia D W, Ma C L. New wave energy devices developed in China[J]. Sea Technology, 2014, 55(5):20.
[54] 盛松伟, 游亚戈, 王坤林, 等. 10kW鹰式波浪能发电装置研究[C]//第二届中国海洋可再生能源发展年会暨论坛论文集. 广州:国家海洋技术中心, 2013:378-384.
[55] Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31(2):271-283.
[56] Executive committee of OES annual report 2015[R]. Lisbon:Creative Studio, 2016:87-88.
[57] 余志, 蒋念东, 游亚戈. 大万山岸式振荡水柱波力电站的输出功率[J]. 海洋工程, 1996, 14(2):77-82.
[58] 盛松伟, 张亚群, 王坤林, 等. 鹰式装置"万山号"总体设计概述[J]. 船舶工程, 2015(S1):10-14.
[59] 陈凤云, 刘伟民, 彭景平. 海洋温差能发电技术的发展与展望[J]. 绿色科技, 2012(11):246-248.
[60] 赵伟阁. 试验用200W氨饱和蒸汽透平的研究与开发[D]. 天津:天津大学, 2005.
[61] 彭景平. 15 kW海洋温差发电系统的试验与研究[D]. 青岛:青岛理工大学, 2012.
[62] 葛云征, 彭景平, 吴浩宇, 等. 海洋温差能向心透平的气动设计及性能研究[J]. 可再生能源, 2019, 37(10):1560-1566.
[63] 施伟, 刘伟民, 刘蕾, 等. 海洋温差电站垂向冷海水管内海水温升特性数值分析[J]. 海洋技术学报, 2016, 35(4):93-96.
[64] 薛海峰. 双引射器海洋温差发电循环特性研究[D]. 济南:山东大学, 2019.
[65] 陈鹿, 潘彬彬, 曹正良, 等. 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017, 36(2):5-6.
[66] 王延辉, 张宏伟, 武建国. 新型温差能驱动水下滑翔器系统设计[J]. 船舶工程, 2009, 31(3):51-54.
[67] 王树新, 王延辉, 张大涛, 等. 温差能驱动的水下滑翔器设计与实验研究[J]. 海洋技术, 2006, 25(1):1-5.
[68] 王兵振, 张巍, 段云棋. 小型温差能发电装置发电特性分析与试验[J]. 太阳能学报, 2018, 39(12):14-22.
[69] 国家海洋技术中心. 中国海洋能技术进展2016[M]. 北京:海洋出版社, 2016:26.
[70] Liu W M, Xu X J, Chen F Y. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion[J]. Renewable & Sustainable Energy Reviews, 2020, doi:10.1016/j.rser.2019.109581.
[71] Vega L A, Nihous G C. At-sea test of the structural response of a large-diameter pipe attached to a surface vessel[C]//Offshore Technology Conference. Houston, USA:SPE, 1988:473-480.
[72] Uehara H. The present status and future of ocean thermal energy conversion[J]. Solar Energy, 1995(16):217-231.
[73] Trimble L C, Owens W L. Review of mini-OTEC performance[C]//Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference. New York, USA:IEEE, 1980:1331-1338.
[74] Mitsui T, Ito F, Seya Y, et al. Outline of the 100 kW OTEC pilot plant in the republic of naure[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(9):3167-71.
[75] Lennard D E. Ocean thermal energy conversion-past progress and future prospects[J]. Physical Science, Measurement and Instrumentation, Management and Education-Reviews, IEE Proceedings A, 1987, 134(5):381-391.
[76] 陈云生. 日本久米岛的海洋温差发电试验[J]. 电世界, 2015(6):33.
[77] 刘伟民. 15kW温差能发电装置研究及试验[J]. 中国科技成果, 2014, 15(10):17.
[78] Technology Collaboration Programme on Ocean Energy Systems. OES annual report[R]. Lisbon:Ocean Energy Systems (OES), 2016.
[79] Technology Collaboration Programme on Ocean Energy Systems. OES annual report[R]. Lisbon:Ocean Energy Systems (OES), 2015.
[80] 岳娟, 于汀, 李大树, 等. 国内外海洋温差能发电技术最新进展及发展建议[J]. 海洋技术学报, 2017, 36(4):82-87.
[81] 田明. 反电渗析法海洋盐差能发电过程研究[D]. 天津:河北工业大学, 2015.
[82] OECD. The future of the ocean economy, Exploring the prospects for emerging ocean industries to 2030[R/OL]. [2020-04-18]. http://www.oecd.org/futures/Future%20of%20the%20Ocean%20Economy%20Project%20Proposal.pdf.
[83] Renewable UK. Export nation a year in UK wind, wave and tidal exports[R/OL]. [2020-04-18]. http://c.ymcdn.com/sites/www.renewableuk.com/resource/resmgr/publications/RUK_Export_Report_final_web_.pdf.
[84] 谢长军. 我国首座海上漂浮式立轴潮流能示范电站建成[J]. 东方电机, 2013(4):80.
[85] Kofoed J P, Frigaard P, Friis-Madsen E, et al. Prototype testing of the wave energy converter wave dragon[J]. Renewable Energy, 2006, 31(2):181-189.
[86] Aquamarine power[EB/OL]. [2020-04-20]. http://www.emec.org.uk/about-us/wave-clients/aquamarine-power/.
[87] 王义强. 海洋温差发电上原循环系统的研究[D]. 青岛:青岛理工大学, 2011.
[88] 沈卫凯. OTEC海洋温差发电系统热力循环分析[D]. 青岛:中国石油大学(华东), 2012.
[89] 苏佳纯, 曾恒一, 肖钢, 等. 海洋温差能发电技术研究现状及在我国的发展前景[J]. 中国海上油气, 2012, 24(4):84-98.
[90] Uehara H, Nakaoka T. Development and future of ocean thermal energy conversion and spray flash desalination[J]. Bulletin of the Society of Sea Water Science Japan, 1999, 53(1):2-11.
[91] Vega L A. Ocean thermal energy conversion primer[J]. Marine Technology Society Journal, 2002, 36(4):25-35.
[92] António F. de Falcão O. Wave energy utilization:A review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 14(3):899-918.
[93] 陈绍艳, 王芳, 张多, 等. 我国波浪能产业化进展现状分析[C]//第八届海洋强国战略论坛论文集. 厦门:中国海洋学会,中国太平洋学会, 2016:121-125.
[94] SeaGen[EB/OL]. [2020-04-20]. http://www.tidalenergy.eu/sea_gen.html.
[95] The European Marine Energy Centre (EMEC) Ltd. The first grid connected tidal device in scotland[EB/OL]. (2008-05-27)[2020-04-18]. http://www.tidalenergy.eu/sea_gen.html
[96] Marine Energy Matters. Marine energy global technology review 2015[R/OL]. [2020-04-18]. http://www.marineenergy-matters.com/wp-content/plugins/email-beforedownload/download.php?dl=b38006051bd1bf5eb1a58444095dff2c.
[97] Low Carbon Innovation Coordination Group. Technology innovation needs assessment marine energy summary report[R/OL]. [2020-04-18]. https://www.carbontrust.com/media/168547/tina-marine-energy-summary-report.pdf.
[98] Magagna D, Jeffrey H. Ocean energy technology:Gaps and barriers[R/OL]. [2020-04-18]. http://www.policyandinnovationedinburgh.org/uploads/3/1/4/1/31417803/gaps_and_barriers_report_fv.pdf.
[99] Mofor L, Goldsmith J, Jones F. Ocean energy technology readiness, patents, deployment status and outlook[R/OL]. [2020-04-18]. http://www.irena.org/DocumentDownloads/Publications/IRENA_Ocean_Energy_report_2014.pdf.
[100] Magagna D, Macgillivray A, Jeffrey H, et al. Wave and tidal energy strategic technology agenda[R/OL]. [2020-04-18]. http://www.policyandinnovationedinburgh.org/uploads/3/1/4/1/31417803/si_ocean_-_wavetidal_strategic_technology_agenda.pdf.
[101] European Commission. Ocean energy:Technology development report[R/OL]. [2020-04-18]. https://setis.ec.europa.eu/publications/relevant-reports/ocean-energytechnology-development-report.
Outlines

/