Innovation Development

Extracting lithium from salt lake with a high magnesium-to-lithium ratio: Research progress and prospect of lithium salt adsorbents

  • DING Tao ,
  • ZHENG Mianping ,
  • PENG Suping ,
  • WU Qian ,
  • HAN Hongye
Expand
  • 1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China;
    2. Department Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2020-05-18

  Revised date: 2020-06-20

  Online published: 2020-08-10

Abstract

According to the statistics of the United States Geological Survey in 2019, the world has identified 62 million tons of lithium resources, of which 59% are distributed in salt lakes. Since most of the salt lakes are high-magnesium-lithium salt lakes,. the extraction process is more difficult. It is desired to prepare an efficient high magnesium-lithium ratio salt lake adsorbent. The article classifies the existing adsorbents according into the different preparation materials and adsorption mechanisms of the adsorbent, summarizes the development status of ion sieve adsorbent, aluminum salt adsorbent, and natural mineral modified adsorbent, and summarizes the adsorption process. The comparative study shows that the natural mineral modified adsorbent has all the advantages of ion sieve adsorbent and aluminum salt adsorbent for lithium extraction. The preparation process is simple, with no waste generation, economic, environmental-friendly, high efficient, etc. In the lithium extraction process, attention should be paid to natural mineral modified adsorbents.

Cite this article

DING Tao , ZHENG Mianping , PENG Suping , WU Qian , HAN Hongye . Extracting lithium from salt lake with a high magnesium-to-lithium ratio: Research progress and prospect of lithium salt adsorbents[J]. Science & Technology Review, 2020 , 38(14) : 94 -101 . DOI: 10.3981/j.issn.1000-7857.2020.14.009

References

[1] 伍倩, 刘喜方, 郑绵平, 等. 我国盐湖锂资源开发现状、存在问题及对策[J]. 现代化工, 2017, 37(5):1-5.
[2] Swain B. Recovery and recycling of lithium:A review[J]. Separation and Purification Technology, 2016, 172:388-403.
[3] Jewell S, Kimball S M. Mineral commodity summaries 2009[R]. Reston:U.S. Geological Survey, 2009.
[4] Jewell S, Kimball S M. Mineral commodity summaries 2010[R]. Reston:U.S. Geological Survey, 2010.
[5] Jewell S, Kimball S M. Mineral commodity summaries 20111[R]. Reston:U.S. Geological Survey, 2011.
[6] Jewell S, Kimball S M. Mineral commodity summaries 2012[R]. Reston:U.S. Geological Survey, 2012.
[7] Jewell S, Kimball S M. Mineral commodity summaries 2013[R]. Reston:U.S. Geological Survey, 2013.
[8] Jewell S, Kimball S M. Mineral commodity summaries 2014[R]. Reston:U.S. Geological Survey, 2014.
[9] Jewell S, Kimball S M. Mineral commodity summaries 2015[R]. Reston:U.S. Geological Survey, 2015.
[10] Jewell S, Kimball S M. Mineral commodity summaries 2016[R]. Reston:U.S. Geological Survey, 2016.
[11] Jewell S, Kimball S M. Mineral commodity summaries 2017[R]. Reston:U.S. Geological Survey, 2017.
[12] Jewell S, Kimball S M. Mineral commodity summaries 2018[R]. Reston:U.S. Geological Survey, 2018.
[13] Jewell S, Kimball S M. Mineral commodity summaries 2019[R]. Reston:U.S. Geological Survey, 2019.
[14] 郑绵平, 向军, 魏新俊, 等.青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989.
[15] 乜贞, 卜令忠, 郑绵平. 中国盐湖锂资源的产业化现状——以西台吉乃尔盐湖和扎布耶盐湖为例[J]. 地球学报, 2010, 31(1):95-101.
[16] 高峰, 郑绵平, 乜贞, 等. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 2011, 32(4):483-492.
[17] 余疆江, 郑绵平, 伍倩. 富锂盐湖提锂工艺研究进展[J]. 化工进展, 2013, 32(1):13-21.
[18] 郑绵平, 张永生, 刘喜方, 等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报, 2016, 90(9):2123-2166.
[19] 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7):796-808.
[20] 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1):141-155.
[21] 苏慧, 朱兆武, 王丽娜, 等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13):2119-2126.
[22] 肖小玲, 戴志锋, 祝增虎, 等. 吸附法盐湖卤水提锂的研宄进展[J]. 盐湖研究, 2005, 13(2):66-69.
[23] Xu X, Chen Y M, Wan P Y, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84(84):276-313.
[24] Zhang Q H, Sun S Y, Li S P,et al. Adsorption of lithium ions on novel nanocrystal MnO2[J]. Chemical Engineering Science, 2018, 62(18-20):4869-4874.
[25] Sun S Y, Song X, Zhang Q H, et al. Lithium extraction/insertion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology[J]. Adsorption, 2011, 17(5):881-887.
[26] Xiao J, Nie X, Sun S, et al. Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model[J]. Advanced Powder Technology, 2015, 26(2):589-594.
[27] Ryu T, Shin J, Lee D H, et al. Development of multistage column for lithium recovery from an aqueous solution[J]. Hydrometallurgy, 2015, 157:39-43.
[28] Sun S Y, Xiao J L, Wang J, et al. Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction[J]. Industrial & Engineering Chemistry Research, 2014, 53(40):15517-15521.
[29] Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxideadsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4[J]. Industrial & Engineering Chemistry Research, 2001, 40(9):2054-2058.
[30] Wang L, Meng C G, Ma W. Study on Li+ uptake by lithium ion-sieve via the pH technique[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 334(1-3):34-39.
[31] Wang L, Meng C G, Han M, et al. Lithium uptake in fixed-pH solution by ion sieves[J]. Journal of Colloid & Interface Science, 2008, 325(1):31-40.
[32] Wang L, Meng C, Ma W. Preparation of lithium ionsieve and utilizing in recovery of lithium from seawater[J]. Frontiers of Chemical Engineering in China, 2009, 3(1):65-67.
[33] Hunter J C. Preparation of a new crystal form of manganese dioxide:λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2):142-147.
[34] Ooi K, Miyai Y, Katoh S, et al. Topotactic Li+ insertion to λ-MnO2 in the aqueous phase[J]. Langmuir, 1989, 5(1):150-157.
[35] Shen X M, Clearfield A. Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide[J]. Academic Press, 1986, 64(3):270-282.
[36] Clearfield A. Inorganic ion exchangers, past, present, and future[J]. Solveent Extraction and Ion Exchange, 2000, 18(4):655-678
[37] Koyanaka H, Matsubaya O, Koyanaka Y, et al. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2[J]. Journal of Electroanalytical Chemistry, 2003, 559:77-81.
[38] Feng Q, Miyai Y, Kanoh H, et al. Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites[J]. Langmuir, 1992, 8(7):1861-1867.
[39] Deschanvers A, Ravean B, Sekkal Z. Mise en evidence et etude cristallographique d'une nouvelle solution solide type spinelle Li1+xTi2-xO4≤ x ≤ 0.333[J]. Materials Research Bulletin, 1971, 6:699-704.
[40] Onodera Y, Iwasaki T, Hayashi H, et al. A new inorganic material with high selective adsorbability for lithium ions[J]. Chemistry and Industry, 1988, 24:786.
[41] 董殿权, 张凤宝, 张国亮, 等. Li4Ti5O12的合成及对Li+的离子交换动力学[J]. 物理化学学报, 2007(6):950-954.
[42] Zhang L Y, Zhou D L, Yao Q Q, et al. Preparation of H2TiO3-lithium adsorbent by the solgel process and its adsorption performance[J]. Applied Surface Science, 2016, 368:82-87.
[43] 陈念. 溶胶-凝胶法合成锂离子筛及其吸附性能研究[D]. 成都:成都理工大学, 2015.
[44] 李少鹏, 张钦辉, 孙淑英, 等. TiO2离子筛的制备及表征[J]. 天津大学学报(自然科学与工程技术版), 2007(4):453-456.
[45] Chitrakar R, Makita Y, Ooi K, et al. Lithium recovery from salt lake brine by H2TiO3[J]. Dalton Transactions, 2014(43):8933-8939.
[46] Sinha A, Nair S R, Sinha P K. Single step synthesis of Li2TiO3 powder[J]. Journal of Nuclear Materials, 2010, 399(2-3):162-166.
[47] 李杰, 熊小波. 铝盐吸附剂盐湖卤水提锂的研究现状及展望[J]. 无机盐工业, 2010, 42(10):9-11.
[48] 罗阿敏, 程芳, 李辉谷, 等. 盐湖卤水提锂的研究进展[J]. 化工矿物与加工, 2018, 47(5):66-72.
[49] Bauman W C, Burba Ⅲ J L. Composition f or the lithium values from brine and process of making/using said composition:6280693[P]. 2001-08-28.
[50] 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D]. 成都:成都理工大学, 2011.
[51] 李霞, 邓昭平, 李晶. 高岭土在盐湖卤水提锂中的应用[J]. 化工进展, 2017, 36(6):2057-2063.
[52] 左思敏, 荆肇乾, 陶梦妮, 等. 天然沸石和改性沸石在废水处理中的应用研究[J]. 应用化工, 2019, 48(5):1136-1139, 1145.
[53] Wisniewska M, Fijałkowska G, Ostolska I, et al. Investigations of the possibility of lithium acquisition fromgeothermal water using natural and synthetic zeolites applyingpoly (acrylic acid)[J]. Journal of Cleaner Production, 2018, 195:821-830.
[54] 吴雅琴, 赵志琦. 高岭石和蒙脱石吸附Li+的实验研究[J]. 矿物学报, 2011, 31(2):291-295.
Outlines

/