[1] Martin G, Rentsch L, Höck M, et al. Lithium market research-Global supply, future demand and price development[J]. Energy Storage Materials, 2016, 6:171-179.
[2] Park J K. Principles and applications of lithium secondary batteries[M]. New York:Wiley, 2012.
[3] 刘丽君, 王登红, 高娟琴, 等. 国外锂矿找矿的新突破(2017~2018年)及对我国关键矿产勘查的启示[J]. 地质学报, 2019, 93(6):1479-1488.
[4] Campbell M G. Battery lithium could come from geothermal waters[J]. New Scientist, 2009, 204(2738):23-23.
[5] Tomaszewska B, Szczepaå S A. Possibilities for the efficient utilisation of spent geothermal waters[J]. Environmental Science & Pollution Research, 2014, 21(19):11409-11417.
[6] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability-A constraint for electric vehicles?[J] Journal of Industrial Ecology, 2011, 15:760-775.
[7] Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48(5):55-69.
[8] Ericksen G E, Vine J D, Ballón A R. Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia[J]. Energy, 1978, 3(3):355-363.
[9] Munk L A, Bradley D C, Hynek S A, et al. Origin and evolution of Li-rich brines at Clayton Valley, Nevada, USA[C]//11th SGA Biennial Meeting. Antofagasta:SGA. 2011:217-219.
[10] Shcherbakov A V, Dvorov V I. Thermal waters as a source for extraction of chemicals[J]. Geothermics, 1970, 2(2):1636-1639.
[11] Tan H, Chen J, Rao W, et al. Geothermal constraints on enrichment of boron and lithium in salt lakes:An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 2012, 51(12):21-29.
[12] Yu J Q, Gao C L, Cheng A Y, et al. Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China[J]. Ore Geology Reviews, 2013, 50(50):171-183.
[13] 雒洋冰, 郑绵平, 任雅琼. 青藏高原特种盐湖与深部火山-地热水的相关性[J]. 科技导报, 2017, 35(12):44-48.
[14] 郑绵平, 刘文高, 向军, 等. 论西藏的盐湖[J]. 地质学报, 1983, 57(2):184-194.
[15] 郑绵平, 向军, 魏新俊, 等. 青藏高原盐湖[M]. 北京:北京科学技术出版社, 1989.
[16] 郑绵平, 郑元, 刘杰. 青藏高原盐湖及地热矿床的新发现[J]. 中国地质科学院院报, 1990(1):151.
[17] Cetiner Z S, Özgür D, Özdilek G, et al. Toward utilising geothermal waters for cleaner and sustainable production:Potential of Li recovery from geothermal brines in Turkey[J]. International Journal of Global Warming, 2015, 7(4):439.
[18] Hano T, Matsumoto M, Ohtake T. Recovery of lithium from geothermal water by solvent extraction technique[J]. Solvent Extraction & Ion Exchange, 1992, 10:195-206.
[19] Jeongeon P, Hideki S, Syouhei N, et al. Lithium recovery from geothermal water by combined adsorption methods[J]. Solvent Extraction & Ion Exchange, 2012, 30:398-404.
[20] Krotscheck E, Smith R A. Separation and recovery of lithium from geothermal water by sequential adsorption process with l-MnO2 and TiO2[J]. Ion Exchange Letters, 2012, 32:2219-2233.
[21] Yanagase K, Yoshinaga T, Kawano K, et al. The recovery of lithium from geothermal water in the Hatchobaru area of Kyushu, Japan[J]. Bulletin of The Chemical Society of Japan, 1983, 56:2490-2498.
[22] 郑绵平, 刘文高. 西藏发现富锂镁硼酸盐矿床[J]. 地质论评, 1982, 28(3):263-266.
[23] Guo Q, Wang Y, Liu W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology & Geothermal Research, 2009, 180(1):9-20.
[24] 郑绵平, 刘文高. 新的锂矿物——扎布耶石[J]. 矿物学报, 1987, 7(3):221-226.
[25] 郑绵平. 水热成矿新类型[M]. 北京:地质出版社, 1995.
[26] Guo Q, Wang Y, Liu W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology & Geothermal Research, 2007, 166(3):255-268.
[27] Tan H, Su J, Xu P, et al. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan plateau:Constraints from geochemical experimental data[J]. Applied Geochemistry, 2018, 93:60-68.
[28] Guo Q H, Wang Y X, Liu W. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 2010, 59:1589-1597.
[29] Guo Q, Wang Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology & Geothermal Research, 2012, 215-216:61-73.
[30] Guo Q, Liu M, Li J, et al. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet Geothermal Province, China[J]. Journal of Geochemical Exploration, 2017, 172:109-119.
[31] Guo Q, Li Y, Luo L. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport[J]. Science of The Total Environment, 2019, 657:1523-1534.
[32] Guo Q, Planer-Friedrich B, Liu M, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513:32-43.
[33] Wang C G, Zheng M P. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 2019, 81:243-258.
[34] Zheng W, Tan H, Zhang Y, et al. Boron geochemistry from some typical Tibetan hydrothermal systems:Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63:436-445.
[35] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1):42-47.
[36] 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12):2269-2283.
[37] 佟伟, 廖志杰. 西藏温泉志[M]. 北京:科学出版社, 2000.
[38] 佟伟, 章铭陶, 张知非, 等. 西藏地热[M]. 北京:科学出版社, 1981.
[39] 张知非, 沈敏子, 赵凤三. 西藏古堆高温水热系统的地下状况[M]//地热专辑(第二辑). 北京:地质出版社, 1989:134-140.
[40] 郑绵平, 刘喜方. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 2010, 84(11):1585-1600.
[41] 郑淑蕙, 张知非, 倪葆龄, 等. 西藏地热水的氢氧稳定同位素研究[J]. 北京大学学报(自然科学版), 1982(1):99-106.
[42] Morozov N P. Geochemistry of the alkali metals in rivers[J]. Geokhimiya, 1969, 6(3):729-739.
[43] 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京:中国地质大学(北京), 2017.
[44] 刘昭, 陈康, 男达瓦. 西藏古堆地热田地下热水水化学特征[J]. 地质论评, 2017(Suppl 1):353-354.
[45] Grimaud D, Huang S, Michard G, et al. Chemical study of geothermal waters of Central Tibet (China)[J]. Geothermics, 1985, 14(1):35-48.
[46] 李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京:中国地质科学院, 2002.
[47] Evans K R. Lithium-Chapter 10[M]//Gunn G. 2014-Critical metals handbook. New Jersey:Wiley-Blackwell, 2014.
[48] Munk L A, Hynek S A, Bradley D, et al. Lithium brines:A global perspective[J]. Review Economic Geology, 2016, 18:339-365.
[49] Bradley D, Munk L, Jochens H, et al. A preliminary deposit model for lithium brines[R]. Reston, Virginia:U.S. Geological Survey, 2013.
[50] Brothers D S, Driscoll N W, Kent G M, et al. Tectonic evolution of the Salton Sea inferred from seismic reflection data[J]. Nature Geoscience, 2009, 2(8):581-584.
[51] Karakas O, Dufek J, Mangan M T, et al. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field[J]. Earth and Planetary Science Letters, 2017, 467:10-17.
[52] Lachenbruch A H, Sass J, Galanis S. Heat flow in southernmost California and the origin of the Salton Trough[J]. Journal of Geophysical Research-Solid Earth, 1985, 90:6709-6736.
[53] Schmitt A K, Hulen J B. Buried rhyolites within the active, high-temperature Salton Sea geothermal system[J]. Journal of Volcanology and Geothermal Research, 2008, 178:708-718.
[54] Elderfield H, Greaves M J. Strontium isotope geochemistry of icelandic geothermal systems and implications for sea water chemistry[J]. Geochimica et Cosmochimica Acta, 1981, 45:2201-2212.
[55] Jones B, Renaut R W, Torfason H, et al. The geological history of Geysir, Iceland:A tephrochronological approach to the dating of sinter[J]. Journal of the Geological Society, 2007, 164(6):1241-1252.
[56] Geilert S, Vroon P Z, Keller N S, et al. Silicon isotope fractionation during silica precipitation from hot-spring waters:Evidence from the Geysir geothermal field, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 164:403-427.
[57] Chowdhury A N, Handa B K, Das A K. High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga Valley, Kashmir, India[J]. Geochemical Journal, 1974, 8:61-65.
[58] Fuge R. On the behaviourof fluorine and chlorine during magmatic differentiation[J]. Contributions to Mineralogy & Petrology, 1977, 61(3):245-249.
[59] Webster E A, Holloway J R. The partitioning of REE's, Rb and Cp between silicic meh and a CI fluid[OL]. EOS, 1980, 61:1152.
[60] Brown L D, Zhao W, Nelson K D, et al. Bright spots, structure, and magmatism in southern tibet from indepth seismic reflection profiling[J]. Science, 1996, 274:1688-1690.
[61] Chen L, Booker J R, Jones A G, et al. Electrically conductive crust in Southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274:1694-1696.
[62] Kind R, Ni J, Zhao W, et al. Evidence from earthquake data for a partially molten crustal layer in Southern Tibet[J]. Science, 1996, 274:1692-1694.
[63] Makovsky Y, Klemperer S L, Ratschbacher L, et al. INDEPTH wide-angle reflection observation of P-wave-toS-wave conversion from crustal bright spots in Tibet[J]. Science, 1996, 274:1690-1691.
[64] Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science, 1996, 274:1684-1688.
[65] Wei W B, Jin S, Ye G F, et al. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magmetotulleric sounding[J]. Science in China (Earth Sciences), 2010, 53:189-202.
[66] 谭捍东, 魏文博, Martyn U, 等. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报, 2004, 47(4):685-690.
[67] Davis J R, Friedman I, Gleason J D. Origin of the lithium-rich brine, Clayton Valley, Nevada[J]. U.S. Geological Survey Bulletin, 1986, 1622:131-138.
[68] Zhang L, Chan L H, Gieskes J M. Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918/919, Irminger Basin[J]. Geochimica et Cosmochimica Acta, 1998, 62(14):2437-2450.
[69] Wang C G, Zheng M P, Zhang X F, et al. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China[J]. Geoscience Frontiers, 2019, doi:10.1016/j.gsf.2019.09.013.
[70] Francheteau J, Jaupart C, Shen X J, et al. High heat flow in southern Tibet[J]. Nature, 1984, 307(5946):32-36.
[71] Tan H, Zhang Y, Zhang W, Kong N, Zhang Q, Huang J. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 2014, 51:23-32.
[72] Liu M L, Guo Q H, Wu G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China):Daggyai and Quzhuomu[J]. Geothermics, 2019, 82:190-202.
[73] Chagnes A, Światowska J. Lithium Process Chemistry[M]. Amsterdam:Elsevier, 2015.
[74] Berthold C E. Magmamax No. 1 Geothermal minerals recovery pilot plant, engineering design[R]. Reho, Nevada:Hazen Research, Reno Metallurgy Research Center, 1978.
[75] Farley E P, Watson E L, Macdonald D D, et al. Recovery of heavy metals from high salinity geothermal brine[R]. Nevada:SRI International, 1980.
[76] Schultze L E, Bauer D J. Recovering lithium chloride from a geothermal brine[R]. Reston, Virginia:United States Bureau of Mines, Fort Meade in Maryland, 1984.
[77] Małgorzata W, Gracja F, Iwona O, et al. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly (acrylic acid)[J]. Journal of Cleaner Production, 2018, 195:821-830.
[78] Ziya S C, Özgür D, Göksel Ö, et al. Toward utilizing geothermal waters for cleaner and sustainable production:Potential of Li recovery from geothermal brines in Turkey[J]. International Journal of Global Warming, 2015, 7(4):439.
[79] Sun S, Yi X P, Li M L, et al. Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique[J]. Journal of Cleaner Production, 2020, 247:119178.
[80] Wang H S, Cui J, Li M L, et al. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO[J]. Chemical Engineering Journal, 2020, 389:124410.
[81] Pauwels H, Brach M, Fouillac C. Lithium recovery from geothermal waters of Cesano (Italy) and Cronembourg (Alsace, France)[C]//12th New Zealand Geothermal Workshop. Orléans:Bureau de Recherches Géologiques et Minières, 1990:117-123.
[82] Nishihama S, Onishi K, Yoshizuka K. Selective recovery process of lithium from seawater using integrated ion exchange methods[J]. Solvent Extraction and Ion Exchange, 2011, 29(3):421-431.
[83] Miyai Y, Ooi K, Katoh S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4[J]. Separation Science and Technology, 1998, 23(1-3):179-191.
[84] Chung K S, Lee J C, Kim W K, et al. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater[J]. Journal of Membrane Science, 2008, 325(2):503-508.
[85] Flexer V, Baspineiro C F, Galli C L. Lithium recovery from brines:a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science Total Environment, 2018, 639:1188-1204.
[86] Song J F, Nghiem L D, Li X M, et al. Lithium extraction from Chinese salt-lake brines:Opportunities, challenges, and future outlook[J]. Environmental Science-Water Research & Technology, 2017, 3:593-597.
[87] Zheng M P. Preliminary discussion of low-salinity hydrothermal fluid mineralization[J]. Chinese Science Bulletin, 1999, 44(Suppl 2):141-143.