Review

Research status and prospect of aircraft swarms autonomou air combat

  • LIANG Xiaolong, HU Liping, ZHANG Jiaqiang, BAI Peng, REN Baoxiang, LI Zhe, HE Lülong
Expand
  • Air Traffic Control and Navigation College, Aircraft Swarm Technology and Operational Application Laboratory, Air Force Engineering University, Xi'an 710051, China

Received date: 2019-08-26

  Revised date: 2019-11-02

  Online published: 2020-08-14

Abstract

Autonomous air combat of aircraft swarm is a typical difficult problem that must be studied in the field of military intelligence. On the basis of summarizing relevant theories and techniques of intelligent air combat, the paper sorts out and summarizes the research work of predecessors, clarifies the development of intelligent air combat, and focuses on analysis of aircraft swarm theory and technology as well as the application status of artificial intelligence in air combat decision-making. Its purpose is to explore possible strategies for the development of China's intelligent military and feasible ways to achieve independent air combat of the swarm.

Cite this article

LIANG Xiaolong, HU Liping, ZHANG Jiaqiang, BAI Peng, REN Baoxiang, LI Zhe, HE Lülong . Research status and prospect of aircraft swarms autonomou air combat[J]. Science & Technology Review, 2020 , 38(15) : 74 -88 . DOI: 10.3981/j.issn.1000-7857.2020.15.009

References

[1] 张凤坡, 黄巍. 军事智能要突出人的作用[N]. 学习时报, 2017-11-29(6).
[2] Tina V, Amit K. Ambika methods for solving matrix games with atanassov's intuitionistic fuzzy payoffs[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1):270-283.
[3] Koiwanit J, Supap T, Chan C, et al. An expert system for monitoring and diagnosis of ammonia emissions from the post-combustion carbon dioxide capture process system[J]. International Journal of Greenhouse Gas Control, 2014, 26(7):158-168.
[4] Challita U, Saad W, Bettstetter C. Interference management for cellular-connected UAVs:A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2019, 18(4):2125-2140.
[5] Xu G Y, Wei S N, Zhang H M. Application of situation function in air combat differential games[C]//Proceedings of the 36th Chinese Control Conference. Dalian, China:Shanghai Systems Science Press, 2017:5865-5870.
[6] Qian P, Zhou D, Huang J, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]//Proceedings of the 2017 IEEE International Conference on Information & Automation. Macau, China:IEEE, 2017:726-731.
[7] Nicholas E, David C, Corey S, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1):1-7.
[8] 柏鹏, 梁晓龙, 王鹏, 等. 新型航空集群空中作战体系研究[J]. 空军工程大学学报(军事科学版), 2016, 16(2):1-4.
[9] 胡利平, 梁晓龙, 张佳强, 等. 航空集群系统构建机理研究[J]. 火力与指挥控制, 2017, 42(11):142-145.
[10] 丁全心. 现代空战中的战术辅助决策技术[J]. 电光与控制, 2009, 16(12):1-4.
[11] Lizza C, Friedlander C. The pilot's associate:A forum for the integration of knowledge-based systems and avionics[C]//Proceedings of the IEEE 1988 National. Piscataway NJ:IEEE Press, 1988:1252-1258.
[12] 吴文海, 张源原, 周思羽, 等. 飞行员助手项目综述[J]. 航空学报, 2016, 37(12):3563-3577.
[13] 黄长强. 未来空战过程智能化关键技术研究[J]. 航空兵器, 2019, 26(1):11-19.
[14] 张晓海, 操新文. 基于深度学习的军事智能决策支持系统[J]. 指挥控制与仿真, 2018, 40(2):1-7.
[15] 胡桐清, 陈亮. 军事智能辅助决策的理论与实践[J]. 军事系统工程, 1995, (1):3-10.
[16] 屈强. 基于MAS的作战辅助决策系统的研究与设计[D]. 长沙:中南大学, 2009.
[17] 屈强, 彭军, 黎大元. 作战辅助决策多智能体系统体系结构[J]. 计算机系统应用, 2010, 19(4):1-4.
[18] 陈华东, 王航宇, 王树宗, 等. 网络中心战中基于MAS的分布式辅助决策研究[J]. 火力与指挥控制, 2010, 35(10):11-14.
[19] 杨晓东. 智能化战术辅助决策方法研究[D]. 北京:北京航空航天大学, 2010.
[20] Nguyen T T H. The U.S. Rebalance to the Asia-Pacific:An assessment[J]. Social Science Electronic Publishing, 2016, 8(2):20-39.
[21] Luis S. The ‘Third’ US Offset strategy and Europe's ‘Anti-access’ challenge[J]. Journal of Strategic Studies, 2016, 39(3):417-445.
[22] Dustin A L, Gabriella B, Naz K M. War-algorithm accountability[R]. Cambridge:Harvard law School Program on International Law and Armed Conflict, 2016.
[23] DARPA Public Affairs. OFFSET envisions swarm capabilities for small urban ground units[EB/OL]. (2016-12-07)[2019-06-22]. http://www.darpa.mil/news-events/2016-12-07.
[24] Daniel P. Gremlins[EB/OL]. (2015-09-22)[2019-06-23]. http://www.darpa.mil/program/gremlins.
[25] Office of Naval Research. LOCUST:Autonomous, swarming uavs fly into the future[EB/OL]. (2015-10-12)[2019-06-28]. http://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarmONR.aspx.
[26] Todd H, Christopher M, Richmon T, et al. The DARPA nano air vehicle program[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee:AIAA, 2012:1-9.
[27] Ledé J C. Collaborative operations in denied environment[R]. Virginia:Tactical Technology Office, 2015.
[28] 李磊, 王彤, 蒋琪. 美国CODE项目推进分布式协同作战发展[J]. 无人机系统技术, 2018, 1(3):59-66.
[29] 赵彦杰. 关于无人机蜂群系统的思考[EB/OL]. (2017-04-22)[2019-06-22]. https://www.sohu.com/a/135798486_465915.
[30] 焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1):61-64.
[31] Osborne T. Russia's MIG sees pilotless fighters as a focus for the future[J]. Aviation Week and Space Technology, 2017(12):27-28.
[32] Vasarhelyi G, Viragh C, Somorjai G, et al. Outdoor flocking and formation flight with autonomous aerial robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago IL:IEEE, 2014:3866-3873.
[33] 段海滨, 邱华鑫, 陈琳, 等. 无人机自主集群技术研究展望[J]. 科技导报, 2018, 36(21):90-98.
[34] Luo Q A, Duan H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70:257-264.
[35] Duan H B, Yang Q, Deng Y M, et al. Unmanned aerial systems coordinate target allocation based on wolf behaviors[J]. Science China (Information Sciences), 2019, 62(1):205-207.
[36] Liu Z, Gao X, Fu X. Coalition formation for multiple UAVs cooperative search and attack with communication constraints in unknown environment[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34(6):688-699.
[37] Chen J, Qiu X, Jia R, et al. Design method of organizational structure for MAVs and UAVs heterogeneous team with adjustable autonomy[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):286-295.
[38] Wan K F, Gao X G, Li B, et al. Using approximate dynamic programming for multi-ESM scheduling to track ground moving targets[J]. Journal of Systems Engineering and Electronics, 2018, 29(1):74-85.
[39] Jian L X, Yin D, Shen L C, Niu Y F. Human machine collaborative support scheduling system of intelligence information from multiple unmanned aerial vehicles based on eye tracker[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22(3):322-328.
[40] Jian Y, Dong Y, Shen L C, et al. Cooperative deconflicting heading maneuvers applied to unmanned aerial vehicles in non-segregated airspace[J]. Journal of Intelligent & Robotic Systems, 2018(1):1-15.
[41] Chen S F, Wu F, Shen L C, et al. Decentralized patrolling under constraints in dynamic environments[J]. IEEE Transactions on Cybernetics, 2017, 46(12):3364-3376.
[42] Jian L X, Yin D, Shen L C, et al. Human machine collaborative support scheduling system of intelligence information from multiple unmanned aerial vehicles based on eye tracker[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22(3):322-328.
[43] Wen N F, Su X H, Ma P J, et al. Online UAV path planning in uncertain and hostile environments[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2):469-487.
[44] Zhao M, Zhao L L, Su X H, et al. Improved discrete mapping differential evolution for multi-unmanned aerial vehicles cooperative multi-targets assignment under unified model[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3):765-780.
[45] Wang X G, Qin W T, Bai Y L, et al. Cooperative target localization using multiple UAVs with out-of-sequence measurements[J]. Aircraft Engineering & Aerospace Technology, 2017, 89(1):112-119.
[46] 侯岳奇, 梁晓龙, 何吕龙, 等. 未知环境下无人机集群协同区域搜索算法[J]. 北京航空航天大学学报, 2019, 45(2):347-356.
[47] 梁晓龙, 张佳强, 吕娜. 无人机集群[M]. 西安:西北工业大学出版社, 2018:39-46.
[48] 梁晓龙, 何吕龙, 张佳强, 等. 航空集群构型控制及其演化方法研究[J]. 中国科学(技术科学), 2019, 49(3):277-287.
[49] Xu Z F, Wei R X, Zhang Q R, et al. Obstacle avoidance algorithm for UAVs in unknown environment based on distributional perception and decision making[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation & Control Conference. Nanjing, China:IEEE, 2017:1072-1075.
[50] 易明. 中国电子科技集团成功完成无人机集群飞行试验[J]. 机器人技术与应用, 2017, 1(4):11-11.
[51] 环球网. 6月, 空军将举办"无人争锋"智能无人机集群系统挑战赛[EB/OL]. (2018-04-13)[2019-07-26]. https://baijiahao.baidu.com/s?id=1597615244824339785&wfr=spider&for=pc.
[52] 牛庆功. 有人机与无人机协同作战运用浅析[J]. 科技视界, 2013(7):42-42.
[53] Erwin E. Routledge hand-book of ethics and war:Just war theory in the twenty-first century[J]. Naval War College Review, 2017, 70(4):159-161.
[54] Mario V, Tom S, Yoshiaki K, et al. Implementation of a manned vehicle-UAV mission system[C]//IAA Guidance, Navigation, and Control Conference and Exhibit. Rhode Island:AIAA, 2004:1-16.
[55] 钟赟. 有人-无人机协同作战决策问题研究[D]. 西安:空军工程大学, 2018.
[56] 李东海, 张玉民. 未来空战的"黄金搭档"[N]. 解放军报, 2018-10-26(11).
[57] 杨一岱, 牟婧. 有人/无人智能体协同决策技术研究现状及发展趋势研究[C]//第五届航天电子战略研究论坛论文集. 北京:国防工业出版社, 2018:17-20.
[58] Liang Y, Yu S. Research on compatibility in man-machine interface design of products[J]. IOP Conference Series Materials Science and Engineering, 2018, 439(3):1-6.
[59] Moshu Q, Ke X. Fault tolerant control scheme design for formation flight control system of multiple unmanned aerial vehicles[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(4):133-141.
[60] Zhang A, Tang Z, Zhang C. Man-machine function allocation based on uncertain linguistic multiple attribute decision making[J]. Chinese Journal of Aeronautics, 2011, 24(6):816-822.
[61] Eun Y, Bang H. Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithm[J]. Journal of Aircraft, 2012, 46(1):338-343.
[62] Zhong X, Xiong P, Yan S, et al. Assessment of the feasibility of detecting concrete cracks in images acquired by unmanned aerial vehicles[J]. Automation in Construction, 2018, 89:49-57.
[63] 陈航辉. 人工智能如何颠覆未来战争[N]. 中国国防报, 2018-01-02(4).
[64] Gregory C A, Taniel C. Artificial intelligence and national security[R]. Philadelphia, USA:Congressional Research Services, 2018.
[65] Networking and Information Technology Research and Development Subcommittee. National artificial intelligence research and development strategic plan[R]. Washington, USA:National Science and Technology Council, 2016.
[66] Chen Y, Tushar K, Joel S M, et al. Eyeriss:An energyefficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1):127-138.
[67] 龙坤, 朱启超."算法战争"的概念、特点与影响[J]. 国防科技, 2017, 38(6):36-42.
[68] Krieg A, Rickli J M. Surrogate warfare:the art of war in the 21st century?[J]. Defence Studies, 2018, 18(2):113-130.
[69] 张强. 斗勇更需斗"智"军事智能化, 全新战略制高点[N]. 科技日报, 2017-12-06(5).
[70] 陈赤联, 王瑜, 姜希. 数据链:破局而立者生[J]. 中国电子科学研究院学报, 2019, 14(4):331-337, 353.
[71] 中国航天科工三院. 三院三部复杂系统控制与智能协同技术重点实验室成功举办未来空战与人工智能高端研讨会[EB/OL]. (2018-09-27)[2019-07-27]. http://www.casic.com.cn/n103/n135/c9381882/content.html.
[72] 史振庆, 梁晓龙, 张佳强, 等. 基于协同攻击区的航空集群最优空间构型研究[J]. 兵工学报, 2019, 40(4):788-798.
[73] Zhang J Q, Liang X L, Shi Z Q, et al. AAM Two-onone Cooperative Interception with Controllable Impact Time Difference[C]//2018 IEEE/CSAA Guidance, Navigation and Control Conference. Xiamen, China:IEEE, 2018:2286-2291.
[74] Wang W J, Bai P, Liang X L, et al. Performance analysis and path planning for UAVs swarms based on RSS measurements[J]. Aerospace Science and Technology, 2018, 81:157-166.
[75] Hu L P, Bai P, Liang X L, et al. Solution and optimization of aircraft swarm cooperating anti-stealth formation configuration[J]. IEEE Access, 2018, 6(1):71485-71496.
[76] 张佳强, 梁晓龙, 尹忠海, 等. 航空集群协同反隐身构型与机动策略[J]. 系统工程与电子技术, 2016, 38(11):2518-2522.
[77] Wang B, Liang X L, Wei L, et al. Aviation multi-station collaborative detecting based on time-frequency correlation of data-link[J]. Systems Engineering and Electronics, 2017, 28(5):827-840.
[78] 朱创创. 面向任务的航空集群运动控制与演示验证研究[D]. 西安:空军工程大学, 2017.
[79] Hu L P, Bai P, Liang X L, et al. Research on evolution method of aircraft swarms space configuration based on event-driven[C]//2018 IEEE/CSAA Guidance, Navigation and Control Conference. Xiamen, China:IEEE, 2018:1612-1616.
[80] He L L, Bai P, Liang X L, et al. Feedback formation control of UAV swarm with multiple implicit leaders[J]. Aerospace Science and Technology, 2018, 72(7):327-334.
[81] 景晓年. 航空集群运动一致性及其控制方法研究[D]. 西安:空军工程大学, 2016.
[82] 梁晓龙, 刘流, 何吕龙, 等. 基于固定时间一致性的航空集群构型变换[J]. 系统工程与电子技术, 2018, 40(7):1506-1512.
[83] 孙强, 梁晓龙, 尹忠海, 等. UAV集群自组织飞行建模与控制研究[J]. 系统工程与电子技术, 2016, 38(7):1649-1653.
[84] 刘流, 梁晓龙, 张佳强, 等. 切换通信拓扑条件下的无人机集群构型变换控制[J]. 兵工学报, 2019, 40(5):996-1002.
[85] 朱创创, 梁晓龙, 张佳强, 等. 无人机集群编队控制演示验证系统[J]. 北京航空航天大学学报, 2018, 44(8):1739-1746.
Outlines

/