Exclusive: Silk-road risk reduction and sustainable development

The research and development of spatial hazard reduction in the Belt and Road initiative

  • YU Bo ,
  • CHEN Fang ,
  • YANG Aqiang
Expand
  • 1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Hainan Key Laboratory of Earth Observation, Sanya 572029, China

Received date: 2019-07-22

  Revised date: 2020-03-22

  Online published: 2020-09-09

Abstract

The Belt and Road Initiative is proposed to promote mutual development and enhance cooperation to achieve the result of ‘all win’. However, due to the complicated geographical environment and various climatic conditions of all the countries along the Belt and Road regions, frequent natural hazards are threatening human lives and property. Therefore, measures of hazard reduction for the countries along the Belt and Road regions will not only help strengthen the Silk Road's scientific and technological innovation cooperation, but also strengthen mutual trust in national diplomatic strategies and ensure the safety for people's lives and property. This paper discusses the hazard reduction of the Belt and Road countries in the support of the ground observation technology, and the technology improvement of the global spatial technology, as well as the role that the new technology plays in the hazard reduction from the perspective of landslides.

Cite this article

YU Bo , CHEN Fang , YANG Aqiang . The research and development of spatial hazard reduction in the Belt and Road initiative[J]. Science & Technology Review, 2020 , 38(16) : 53 -57 . DOI: 10.3981/j.issn.1000-7857.2020.16.006

References

[1] 范一大."一带一路" 战略减灾合作研究[J]. 中国减灾, 2015(9):44-49.
[2] 高中华."一带一路" 发展战略与国际减灾合作[J]. 中国减灾, 2015(9):22-23.
[3] 许闲."一带一路" 战略下的区域间防灾减灾合作[J]. 上海保险, 2016(7):34-35.
[4] Fu W, Ma J, Chen P, et al. Remote sensing satellites for digital earth[M]. Singapore:Springer Singapore, 2020:55-123.
[5] Amade N, Painho Moliveira T. Geographic information technology usage in developing countries-A case study in Mozambique[J]. Geo-spatial Information Science, 2018, 21(4):331-345.
[6] Jensen J R. Remote sensing of the environment:An earth resource perspective[M]. India:Pearson Education, 2009.
[7] Schowengerdt R A. Remote sensing:Models and methods for image processing[M]. Amsterdam:Elsevier, 2006.
[8] Weng Q. Advances in environmental remote sensing:Sensors, algorithms, and applications[M]. Boca Raton:CRC Press, 2011.
[9] Woodcock C E, Allen R, Anderson M, et al. Free access to Landsat imagery[J]. Science, 2008, 320(5879):1011-1011.
[10] Doxaran D, Froidefond J M, Lavender S, et al. Spectral signature of highly turbid waters:Application with SPOT data to quantify suspended particulate matter concentrations[J]. Remote Sensing of Environment, 2002, 81(1):149-161.
[11] Dial G, Bowen H, Gerlach F, et al. IKONOS satellite, imagery, and products[J]. Remote Sensing of Environment, 2003, 88(1/2):23-36.
[12] Castillejo-González I L, López-Granados F, García-Ferrer A, et al. Object-and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery[J]. Computers and Electronics in Agriculture, 2009, 68(2):207-215.
[13] Fraser C S M. Georeferencing accuracy of GeoEye-1 imagery[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(6):634-638.
[14] Gerling T. Structure of the surface wind field from the Seasat SAR[J]. Journal of Geophysical Research:Oceans, 1986, 91(2):2308-2320.
[15] Baghdadi N, Boyer N, Todoroff P, et al. Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island[J]. Remote Sensing of Environment, 2009, 113(8):1724-1738.
[16] Solberg A H, Brekke C P O. Oil spill detection in Radarsat and Envisat SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):746-755.
[17] The Committee on Earth Observation Satellites (CEOS). The Earth observation handbook[M]. United Kingdom:Symbios Spazio Ltd., 2012.
[18] 郭华东, 陈方, 邱玉宝. 全球空间对地观测五十年及中国的发展[J]. 中国科学院院刊, 2013, 28(21):1-10.
[19] 崔鹏, 苏凤环. 国产高分辨率卫星在"一带一路" 自然灾害风险管理中的应用[J]. 卫星应用, 2016(10):8-11.
[20] 柏永青, 王卷乐, 王玉洁, 等. 基于TRMM降水数据的1998-2015年"一带一路" 干旱时空分布[J]. 资源与生态学报, 2017, 8(6):559-570.
[21] Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173.
[22] Petley D. Global patterns of loss of life from landslides[J]. Geology, 2012, 40(10):927-930.
[23] 裴艳茜, 邱海军, 胡胜, 等."一带一路" 地区滑坡灾害风险评估[J]. 干旱区地理, 2018, 41(6):85-100.
[24] 裴艳茜, 邱海军, 胡胜, 等. 中巴经济走廊地质灾害敏感性分析[J]. 第四纪研究, 2018, 38(6):1369-1383.
[25] CAS-TWAS空间减灾卓越中心[J]. 中国科学院院刊, 2017, 32(增刊2):105-107.
[26] 陈旭光, 高浩, 林墨, 等. 卫星应用筑梦"一带一路"[J]. 卫星应用, 2015(8):27-30.
[27] Guha-Sapir D, Below R, Hoyois P. EM-DAT:The CRED/OFDA international disaster database[Z]. Université Catholique de Louvain, 2016.
[28] Martinez J. Detection of landslides by object-oriented image analysis[M]. Enschede:University of Twente, Faculty of Geo-Information Science and Earth Observation, 2011.
[29] Ciampalini A, Raspini F, Bianchini S, et al. Remote sensing as tool for development of landslide databases:The case of the Messina Province (Italy) geodatabase[J]. Geomorphology, 2015(249):103-118.
[30] Niu R, Wu X, Yao D, et al. Susceptibility assessment of landslides triggered by the Lushan earthquake, April 20, 2013, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9):3979-3992.
[31] Gorum T, Fan X, Van W C, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan Earthquake[J]. Geomorphology, 2011(133):152-167.
[32] Yu B, Chen F, Muhammad S. Analysis of satellite-derived landslide at Central Nepal from 2011 to 2016[J]. Environmental Earth Sciences, 2018, 77(9):331.
[33] 王治华. 滑坡图像自动识别浅议[J]. 地球信息科学学报, 2013, 5(15):726-733.
[34] Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016(185):142-154.
[35] Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.
[36] Padarian J, Minasny B, McBratney A B. Using Google's cloud-based platform for digital soil mapping[J]. Computers & Geosciences, 2015(83):80-88.
[37] Chen F, Yu B, Xu C, et al. Landslide detection using probability regression, a case study of Wenchuan, northwest of Chengdu[J]. Applied geography, 2017(89):32-40.
[38] Chen F, Yu B, Li B. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest:A case study of national Nepal[J]. Landslides, 2018, 15(3):453-464.
Outlines

/