This paper investigates the extreme maximum temperature event characterization and the population exposure in the Belt and Road regions by using the maximum temperature form ERA-Interim reanalysis dataset and the gridded population dataset in the period from 1979 to 2018. The extreme maximum temperature threshold is determined based on the 95% quartile of the daily maximum temperature. The improved Intensity-Area-Duration (IAD) method is used to determine the extreme maximum temperature event characteristics and the quantitative assessment of the population exposure to these extreme events. It is shown that, in the Belt and Road area, the frequency, the intensity and the duration of the summer extreme maximum temperature events are increased in the 1979-2018 period. The significant increase area is distributed in eastern China, western Russia and Central Eastern Europe. In summer, the extreme maximum temperature events mostly occur in Kazakhstan, Xinjiang, and central Russia, generally, in the northern part of the study area. The intensity high value area is mainly distributed in Egypt, Saudi Arabia, Pakistan, India and other places in the southwest region whereas the duration high value area is concentrated in India mainly. During the study period, the yearly cumulative impact area and the population exposure to extreme temperature events show an upward trend, reaching the highest value in the past 10 years. Areas with the high population exposure are mainly distributed in eastern China, Indian continent and countries around the Black Sea and the areas with high population exposure are expanding. Among the influencing factors of the population exposure, the climate factor, the population factor, the interaction of the climate and population factors have a similar contribution rate, but the contribution rate of the climatic factors has increased significantly in the past 10 years. It is suggested to strengthen the research of monitoring, warning and forecast of the extreme maximum temperature events.
[1] World Meteorological Organization(WMO). The global climate in 2015-2019[R]. Switzerland:WMO, 2019.
[2] IPCC. Climate change 2013:The physical science basis:contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2013:208-209.
[3] IPCC. Climate change 2014:Impacts, adaptation and vulnerability. contribution of working group ii to the fifth assessment report of IPCC the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2014:720-721.
[4] Wang Y J, Wang A Q, Zhai J Q, et al. Tens of thousands additional deaths annually in cities of China between 1.5℃ and 2.0℃ warming[J]. Nature Communications, 2019, doi:10.1038/s41467-019-11283-w.
[5] Fouillet. The relationship between summer daily temperature and mortality in France:1975 to 2003[J]. Current Genetics, 2006, 32(1):60-65.
[6] Hoag H. Russian summer tops ‘universal’ heatwave index[EB/OL]. (2014-10-29)[2020-02-20]. https://www.nature.com/news/russian-summer-tops-universal-heatwave-index-1.16250.
[7] Ians. Delhi records highest temperature in history[EB/OL]. (2019-6-10)[2020-03-01]. https://www.khaleejtimes.com/international/india/delhi-records-highest-temperature-inhistory.
[8] Mandhro S. Karachi heatwave death toll crosses 1, 200:Health department[EB/OL]. (2015-6-28)[2020-03-02]. https://tribune.com.pk/story/911335/heatwave-death-tollin-karachi-crosses-1200-health-department.
[9] World Meteorological Organization(WMO). The global climate 2001-2010:A decade of climate extremes[R]. Switzerland:WMO, 2013.
[10] 任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014:40(7):860-874.
[11] 王灏晨, 路凤, 武继磊, 等. 中国气候变化对人口健康影响研究评述[J]. 科技导报, 2014, 32(28/29):109-116.
[12] 罗慧, 张雅斌, 刘璐. 高影响天气事件公众关注度的风险评估[J].气象, 2007:33(10):15-22.
[13] 翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012:14(9):55-63.
[14] Jones B, O' Neill B C, Mcdaniel L, et al. Future population exposure to US heat extremes[J]. Nature Climate Change, 2015:5(7):652-655.
[15] 姜彤, 王艳君, 翟建青, 等. 极端气候事件社会经济影响的风险研究:理论、方法与实践[J]. 阅江学刊, 2018(1):90-105.
[16] IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups i and ii of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2012:40-42.
[17] 景丞, 姜彤, 王艳君, 等. 中国区域性极端降水事件及人口经济暴露度研究[J]. 气象学报, 2016, 74(4):572-582.
[18] 王安乾, 苏布达, 王艳君, 等. 中国极端低温事件特征及其耕地暴露度研究[J]. 资源科学, 2017:39(5):954-963.
[19] 王安乾, 苏布达, 王艳君, 等. 全球升温1.5℃与2.0℃情景下中国极端低温事件变化与耕地暴露度研究[J]. 气象学报, 2017, 75(3):415-428.
[20] Zhan M J, Li X C, Sun H M, et al. Changes in extreme maximum temperature events and population exposure in China under global warming scenarios of 1.5 and 2.0℃:Analysis using the regional climate model COSMO-CLM[J]. Journal of Meteorological Research, 2018, 32(1):99-112.
[21] Huang J L, Zhai J Q, Jiang T, et al. Analysis of future drought characteristics in China using the regional climate model CCLM[J]. Climate Dynamics, 2017, 50(1/2):507-525.
[22] Su B D, Huang J L, Fischer T, et al. Drought losses in China might double between the 1.5℃ and 2.0℃ warming[J]. PNAS, 2018, 115(42):10600-10605.
[23] 毛星竹, 刘建红, 李同昇, 等."一带一路" 沿线国家自然灾害时空分布特征分析[J]. 自然灾害学报, 2018, 27(1):1-8.
[24] NatCatSERVICE. NatCatSERVICE[EB/OL]. (2019-03-16)[2020-03-01]. https://natcatservice.munichre.com.
[25] 刘哲, 张鹏, 刘南江, 等."一带一路" 中国重点区域自然灾害特征分析[J]. 灾害学, 2018, 33(4):65-71.
[26] 吴绍洪, 刘路路, 刘燕华, 等."一带一路" 陆域地理格局与环境变化风险[J]. 地理学报, 2018:73(7):1214-1225.
[27] Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
[28] Simmons A. J, Willett K M, Jones P D, et al. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation:Inferences from reanalyses and monthly gridded observational data sets[J]. Journal of Geophysical Research, 2010, doi:10.1029/2009JD012442.
[29] Uppala S M, Dee D, Shinya K, et al. Towards a climate data assimilation system:status update of ERA-Interim[M]. ECMWF:Newsletter., 2008:2-6.
[30] World Bank. World Development Indicators[R]. Washington:World Bank. 2018.
[31] Manton M J, Della-Marta P M, Haylock M R, et al. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific:1961-1998[J]. International Journal of Climatology 2001:21(3):269-284.
[32] 李庆祥, 黄嘉佑. 对我国极端高温事件阈值的探讨[J]. 应用气象学报, 2011(22):12-18.
[33] IMD. All india heat wave information[EB/OL]. (2019-07-02)[2020-02-20]. http://www.imd.gov.in/pages/heatwave.php.
[34] 潘晓华, 翟盘茂. 气温极端值的选取与分析[J]. 气象, 2002, 28(10):28-31.
[35] Mishra V, Mukherjee S, Kumar R, et al. Heat wave exposure in India in current 1.5℃ and 2.0℃ worlds[J]. Environmental Research Letters,2017, doi.org/10.1088/1748-9326/aa9388.
[36] Sheffield J, Andreadis K M, Wood E F, et al. Global and continental drought in the second half of the twentieth century:Severity-Area-Duration analysis and temporal variability of Large-Scale events[J]. Journal of Climate, 2009, 22(8):1962-198.
[37] Wang A H, Lettenmaier D P, Sheffield J. Soil Moisture drought in China 1950-2006[J]. Journal of Climate, 2011, 24(13):3257-3271.
[38] Lloyd-Hughes BA. Spatio-temporal structure-based approach to drought characterisation[J]. International Journal of Climatology, 2012, 32(3):406-418.
[39] Xu K, Yang D, Yang H, et al. Spatio-temporal variation of drought in China during 1961-2012:A climatic perspective[J]. Journal of Hydrology, 2015(526):253-264.
[40] 黄大鹏, 张蕾, 高歌. 未来情景下中国高温的人口暴露度变化及影响因素研究[J]. 地理学报, 2016:71(7):1189-1200.
[41] Zhan L F, Wang Y J, Sun H M, et al. Study on the change characteristics of and population exposure to heatwave events on the North China plain[J]. Advances in Meteorology, 2019, doi:10.1155/2019/7069195.
[42] Mann H B. Non-parametric test against trend[J]. Econometrica, 1945:13(3):245-259.
[43] Kendall M G. Rank correlation methods[J]. British Journal of Psychology, 1990:25(1):86-91.
[44] 庞盛荣, 罗国军. 绍兴市近48年降水演变特征统计分析[J]. 科技导报, 2009, 27(18):60-65.
[45] Guo M, Li J, He H S, et al. Detecting global vegetation changes using mann-kendal (MK) trend test for 1982-2015 time period[J]. Chinese Geographical Science, 2018, 28(6):907-919.
[46] Russo S, Dosio A, Graversen R G, et al. Magnitude of extreme heat waves in present climate and their projection in a warming world[J]. Journal of Geophysical Research Atmospheres, 2014, 119(22):500-512.
[47] Liu Z, Anderson B, Yan K, et al. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change[J]. Scientific Reports, 2017(7):43909.
[48] 孔锋, 申丹娜, 吕丽莉, 等."一带一路" 沿线综合气象灾害防范国际合作[J]. 阅江学刊, 2017(6):69-75.