[1] Troch P A, Martinez G F, Pauwels V R N, et al. Climate and vegetation water use efficiency at catchment scales[J]. Hydrological Processes, 2009, 23(16):2409-2414.
[2] Zhang S, Yang Y, Mcvicar T R, et al. An analytical solution for the impact of vegetation changes on hydrological partitioning within the budyko framework[J]. Water Resources Research, 2018, 54(1):519-537.
[3] Jacobs J M. Ecohydrology:Darwinian expression of vegetation form and function[J]. Eos Transactions American Geophysical Union, 2004, 84(35):345-345.
[4] Anderson M C, Norman J M, Mecikalski J R, et al. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing. 1. Model formulation[J]. Journal of Geophysical Research, 2007, 112:D11112.
[5] Gao X, Zhao X, Li H, et al. Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem[J]. Agricultural and Forest Meteorology, 2018, 263:207-216.
[6] Zhang B, Long B, Wu Z, et al. An evaluation of the performance and the contribution of different modified water demand estimates in drought modeling over waterstressed regions[J]. Land Degradation Development, 2017, 28(3):1134-1151.
[7] Li S, Liang W, Fu B, et al. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China's Loess Plateau[J]. Science of The Total Environment, 2016, 569-570:1032-1039.
[8] Su C, Fu B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use change[J]. Global Planetary Change, 2013, 101:119-128.
[9] Wang Y, Shao M, Zhu Y, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011, 151(4):437-448.
[10] Zhang B, Aghakouchak A, Yang Y, et al. A water-energy balance approach for multi-category drought assessment across globally diverse hydrological basins[J]. Agricultural and Forest Meteorology, 2019, 264:247-265.
[11] Yang Z, Zhang Q, Yang Y, et al. Evaluation of evapotranspiration models over semi-arid and semi-humid areas of China[J]. Hydrological Processes, 2016, 30(23):4292-4313.
[12] Han X, Tsunekawa A, Tsubo M, et al. Effects of landcover type and topography on soil organic carbon storage on Northern Loess Plateau, China[J]. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2010, 60(4):326-334.
[13] Zhang B, He C, Burnham M, et al. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China[J]. Science of The Total Environment, 2016, 539:436-449.
[14] 焦峰, 温仲明, 李锐. 黄土高原退耕还林(草)环境效应分析[J]. 水土保持研究, 2005, 12(1):26-29.
[15] Feng X, Fu B, Piao S, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11):1019-1022.
[16] Wang S, Fu B, Gao G Y, et al. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China[J]. Hydrology and Earth System Sciences, 2012, 16(8):2883-2892.
[17] Chen Y, Wang K, Lin Y, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10):739-741.
[18] Qiu L, Wu Y, Wang L, et al. Spatiotemporal response of the water cycle to land use conversions in a typical hilly-gully basin on the Loess Plateau, China[J]. Hydrology and Earth System Sciences Discussions, 2017, 21(12):1-30.
[19] Zhang B, Wu P, ZhaO X, et al. Assessing the spatial and temporal variation of the rainwater harvesting potential (1971-2010) on the Chinese Loess Plateau using the VIC model[J]. Hydrological Processes, 2014, 28(3):534-544.
[20] 胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):448-457.
[21] 王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):259-269.
[22] Gang C, Wang Z, Chen Y, et al. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011[J]. Ecological Indicators, 2016, 67:788-797.
[23] 张远东, 庞瑞, 顾峰雪, 等. 西南高山地区水分利用效率时空动态及其对气候变化的响应[J]. 生态学报, 2016, 36(6):1515-1525.
[24] 王国庆, 张建云, 贺瑞敏, 等. 黄河中游气温变化趋势及其对蒸发能力的影响[J]. 水资源与水工程学报, 2007, 18(4):36-40.
[25] 张宝庆, 吴普特, 赵西宁, 等. 黄土高原雨水资源化潜力与时空分布特征[J]. 排灌机械工程学报, 2013, 31(7):89-97.
[26] 高晓东, 吴普特, 赵西宁, 等. 黄土丘陵区沟道小流域土壤有效储水量估算[J]. 水利学报, 2013(6):108-116.
[27] Feng X, Wang Y, Chen L, et al. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau[J]. Geomorphology, 2010, 118(3-4):239-248.
[28] 姜永清, 邵明安, 李占斌, 等. 黄土高原流域水系的HORTON级比数和分形特性[J]. 山地学报, 2002, 20(2):206-211.
[29] 王万忠, 焦菊英. 黄土高原侵蚀产沙强度的时空变化特征[J]. 地理学报, 2002, 57(2):210-217.
[30] Shao R, Zhang B, Su T, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China[J]. Journal of Geophysical Research, 2019, doi:10.1029/2019JD031295.
[31] Liu S, Xu Z, Wang W, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4):1291-1306.
[32] 袁小环, 杨学军, 陈超, 等. 基于蒸渗仪实测的参考作物蒸散发模型北京地区适用性评价[J]. 农业工程学报, 2014, 30(13):104-110.
[33] 张秀平, 许小华, 雷声, 等. 基于遥感技术的鄱阳湖湿地蒸散发估算研究[J]. 人民长江, 2014, 45(1):28-31.
[34] Eyring V, Bony S, Meehl G A, et al. Overview of the coupled model intercomparison project phase 6(CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2015, 9(5):1937-1958.
[35] New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part I:Development of a 1961-90 mean monthly terrestrial climatology[J]. Journal of Climate, 2000, 12(3):829-856.
[36] Goossens C, Berger A. Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century[J]. Annales Geophysicae, 1986, 4(4):385-400.
[37] Mann H B. Non-parametric test against trend[J]. Econometrica, 1945, 13(3):245-259.
[38] 叶磊, 周建中, 曾小凡, 等. 水文多变量趋势分析的应用研究[J]. 水文, 2014(6):33-39.
[39] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 等. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6):490-500.