Review

Nanoparticle assembly at the liquid-liquid interfaces: The design and construction of structured liquids

  • LIU Tan ,
  • SHI Shaowei ,
  • Thomas P. RUSSELL
Expand
  • 1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    2. Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA

Received date: 2020-03-06

  Revised date: 2020-05-18

  Online published: 2020-09-15

Abstract

Liquids do not have a definite shape, which depend on the shape of the container. Structured liquid is a new type of soft materials based on the self-assembly and jamming transition of colloidal particles at liquid/liquid interfaces. Here, the research progress in the construction of new structured liquids using nanoparticle surfactants (NPSs) assembly at liquid/liquid interfaces is summarized. The promising applications of structured liquids in the fields of packaging, separation, catalysis, energy storage and biomedicine are introduced. In the future, more studies will focus on the development of new functional NPSs, the construction of multiresponsive, structured all-liquid systems, and the extension of the functional applications of structured liquids.

Cite this article

LIU Tan , SHI Shaowei , Thomas P. RUSSELL . Nanoparticle assembly at the liquid-liquid interfaces: The design and construction of structured liquids[J]. Science & Technology Review, 2020 , 38(17) : 115 -126 . DOI: 10.3981/j.issn.1000-7857.2020.17.011

References

[1] De Gennes P G. Soft matter[J]. Reviews of Modern Physics, 1992, 64(3):645-648.
[2] 李涛, 陈科, Dobnikar J. 双连续型乳液凝胶(Bijel)的研究进展[J]. 物理学报, 2018, 67(14):7-18.
[3] Stratford K, Adhikari R, Pagonabarraga I, et al. Colloidal jamming at interfaces:A route to fluid-bicontinuous gels[J]. Science, 2005, 309(5744):2198-2201.
[4] Clegg P S, Herzig E M, Schofield A B, et al. Emulsification of partially miscible liquids using colloidal particles:Nonspherical and extended domain structures[J]. Langmuir, 2007, 23(11):5984-5994.
[5] Herzig E M, White K A, Schofield A B, et al. Bicontinuous emulsions stabilized solely by colloidal particles[J]. Nature Materials, 2007, 6(12):966-971.
[6] Jaeger H M. Celebrating soft matter's 10th anniversary:Toward jamming by design[J]. Soft Matter, 2015, 11(1):12-27.
[7] Liu A J, Nagel S R. Jamming is not just cool any more[J]. Nature, 1998, 396(6706):21-22.
[8] Li Y, Liu X, Zhang Z, et al. Adaptive structured pickering emulsions and porous materials based on cellulose nanocrystal surfactants[J]. Angewandte Chemie, International Edition in English, 2018, 57(41):13560-13564.
[9] Shi S, Qian B, Wu X, et al. Self-assembly of MXene-surfactants at liquid-liquid interfaces:From structured liquids to 3D aerogels[J]. Angewandte Chemie, International Edition in English, 2019, 58(50):18171-18176.
[10] Forth J, Liu X, Hasnain J, et al. Reconfigurable printed liquids[J]. Advanced Materials, 2018, 30(16):e1707603.
[11] Feng W, Chai Y, Forth J, et al. Harnessing liquid-inliquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices[J]. Nature Communications, 2019, 10(1):1095.
[12] Yang Z, Wei J, Sobolev Y I, et al. Systems of mechanized and reactive droplets powered by multi-responsive surfactants[J]. Nature, 2018, 553(7688):313-318.
[13] Bhattacharjee T, Zehnder S M, Rowe K G, et al. Writing in the granular gel medium[J]. Science Advances, 2015, 1(8):e1500655.
[14] Murphy S V, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785.
[15] Bertassoni L E, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs[J]. Lab Chip, 2014, 14(13):2202-2211.
[16] Wu W, Deconinck A, Lewis J A. Omnidirectional printing of 3D microvascular networks[J]. Advanced Materials, 2011, 23(24):H178-183.
[17] Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Advanced Materials, 2018, 30(43):e1706913.
[18] Kolesky D B, Truby R L, Gladman A S, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J]. Advanced Materials, 2014, 26(19):3124-3130.
[19] Villar G, Graham A D, Bayley H. A tissue-like printed material[J]. Science, 2013, 340(6128):48-52.
[20] Qian F, Zhu C, Knipe J M, et al. Direct writing of tunable living inks for bioprocess intensification[J]. Nano Letters, 2019, doi:10.1021/acs.nanolett.9b00066.
[21] Etienne G, Ong I L H, Amstad E. Bioinspired viscoelastic capsules:Delivery vehicles and beyond[J]. Advanced Materials, 2019, 31(27):e1808233.
[22] Wang L, Quan P, Chen S H, et al. Stability of ligands on nanoparticles regulating the integrity of biological membranes at the nano-lipid interface[J]. ACS Nano, 2019, 13(8):8680-8693.
[23] Melchels F P W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.
[24] Chen S, Cheng H, Meng J, et al. Hierarchical micromesoporous carbon frameworks-based hybrid nanofibres for high-dense capacitive energy storage[J]. Angewandte Chemie, International Edition in English, 2019, doi:10.1002/anie.201911023.
[25] Zhang C J, Mckeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1):1795.
[26] Cain J D, Azizi A, Maleski K, et al. Sculpting liquids with two-dimensional materials:The assembly of Ti3C2Tx MXene sheets at liquid-liquid interfaces[J]. ACS Nano, 2019, doi:10.1021/acsnano.9b05088.
[27] Weber A Z, Mench M M, Meyers J P, et al. Redox flow batteries:A review[J]. Journal of Applied Electrochemistry, 2011, 41(10):1137-1164.
[28] Tian Z, Zhao Y, Wang S, et al. Highly stretchable and conductive composite based on emulsion-templated silver nanowire aerogel[J]. Journal of Materials Chemistry A, 2020, doi:10.1039/C9TA11225A.
[29] Mcquade D T, Seeberger P H. Applying flow chemistry:Methods, materials, and multistep synthesis[J]. Journal of Organic Chemistry, 2013, 78(13):6384-6389.
[30] Myers R M, Fitzpatrick D E, Turner R M, et al. Flow chemistry meets advanced functional materials[J]. Chemistry, 2014, 20(39):12348-12366.
[31] Wegner J, Ceylan S, Kirschning A. Flow chemistry-A key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1):17-57.
[32] Liu J, Yang H, Liu K, et al. Gel-emulsion templated polymeric aerogels for water treatment through organic liquid removing and solar vapor generation[J]. ChemSusChem, 2019, doi:10.1021/acs.analchem.9b03096.
[33] Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surfacemembranes, bubbles, emulsions, and mechanical coagulation)-Preliminary account[J]. Proceedings of the royal Society of London, 1904, 72(477-486):156-164.
[34] Pickering S U. Cxcvi.-Emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91:2001-2021.
[35] Pieranski P. Two-dimensional interfacial colloidal crystals[J]. Physical Review Letters, 1980, 45(7):569.
[36] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100-102:503-546.
[37] Binks B P, Clint J H. Solid wettability from surface energy components:Relevance to pickering emulsions[J]. Langmuir, 2002, 18(4):1270-1273.
[38] Shi S, Russell T P. Nanoparticle assembly at liquid-liquid interfaces:From the nanoscale to mesoscale[J]. Advanced Materials, 2018, doi:10.1002/adma.201800714.
[39] Binks B P. Particles as surfactants-Similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1):21-41.
[40] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23):8622-8631.
[41] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquid interfaces[J]. Science, 2003, 299(5604):226-229.
[42] Lin Y, Böker A, Skaff H, et al. Nanoparticle assembly at fluid interfaces:Structure and dynamics[J]. Langmuir, 2005, 21(1):191-194.
[43] Kutuzov S, He J, Tangirala R, et al. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces[J]. Physical Chemistry Chemical Physics, 2007, 9(48):6351-6358.
[44] Cui M, Emrick T, Russell T P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles[J]. Science, 2013, 342(6157):460-463.
[45] Sun Z, Feng T, Russell T P. Assembly of graphene oxide at water/oil interfaces:Tessellated nanotiles[J]. Langmuir, 2013, 29(44):13407-13413.
[46] Huang C, Sun Z, Cui M, et al. Structured liquids with pH-triggered reconfigurability[J]. Advanced Materials, 2016, 28(31):6612-6618.
[47] Li R, Chai Y, Jiang Y, et al. Carboxylated Fullerene at the oil/water interface[J]. ACS Applied Materials & Interfaces, 2017, 9(39):34389-34395.
[48] Huang C, Cui M, Sun Z, et al. Self-regulated nanoparticle assembly at liquid/liquid interfaces:A Route to adaptive structuring of liquids[J]. Langmuir, 2017, 33(32):7994-8001.
[49] Chai Y, Lukito A, Jiang Y, et al. Fine-tuning nanoparticle packing at water-oil interfaces using ionic strength[J]. Nano Letters, 2017, 17(10):6453-6457.
[50] Cates M E, Clegg P S. Bijels:A new class of soft materials[J]. Soft Matter, 2008, doi:10.1039/b807312k.
[51] Mohraz A. Interfacial routes to colloidal gelation[J]. Current Opinion in Colloid & Interface Science, 2016, 25:89-97.
[52] Haase M F, Stebe K J, Lee D. Continuous fabrication of hierarchical and asymmetric Bijel microparticles, fibers, and membranes by solvent transfer-induced phase separation (STRIPS)[J]. Advanced Materials, 2015, 27(44):7065-7071.
[53] Lee M N, Thijssen J H J, Witt J A, et al. Making a robust interfacial scaffold:Bijel Rheology and its link to processability[J]. Advanced Functional Materials, 2013, 23(4):417-423.
[54] White K A, Schofield A B, Wormald P, et al. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles[J]. Journal of Colloid and Interface Science, 2011, 359(1):126-135.
[55] Tavacoli J W, Thijssen J H J, Schofield A B, et al. Novel, robust, and versatile bijels of nitromethane, ethanediol, and colloidal silica:Capsules, sub-ten-micrometer domains, and mechanical properties[J]. Advanced Functional Materials, 2011, 21(11):2020-2027.
[56] Lee M N, Mohraz A. Bicontinuous macroporous materials from Bijel templates[J]. Advanced Materials, 2010, 22(43):4836-4841.
[57] Haase M F, Sharifi-Mood N, Lee D, et al. In situ mechanical testing of nanostructured Bijel fibers[J]. ACS Nano, 2016, 10(6):6338-6344.
[58] Cai D, Richter F H, Thijssen J H J, et al. Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt[J]. Materials Horizons, 2018, 5(3):499-505.
[59] Thorson T J, Gurlin R E, Botvinick E L, et al. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization[J]. Acta Biomaterialia, 2019, 94:173-182.
[60] White K, Schofield A, Binks B, et al. Influence of particle composition and thermal cycling on Bijel formation[J]. Journal of Physics:Condensed Matter, 2008, 20(49):494223.
[61] Cai D, Clegg P S, Li T, et al. Bijels formed by direct mixing[J]. Soft Matter, 2017, 13(28):4824-4829.
[62] Huang C, Forth J, Wang W, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants[J]. Nature Nanotechnology, 2017, 12(11):1060-1063.
[63] Shi S, Liu X, Li Y, et al. Liquid Letters[J]. Advanced Materials, 2018, 30(9):1705800.
[64] Chen J-T, Zhang M, Russell T P. Instabilities in nanoporous media[J]. Nano Letters, 2007, 7(1):183-187.
[65] Rayleigh L. On the capillary phenomena of jets[J]. Proceedings of the Royal Society of London, 1879, 29(196-199):71-97.
[66] Plateau J. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[M]. Paris:Gauthier-Villars, 1873.
[67] Toor A, Helms B A, Russell T P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets[J]. Nano Letters, 2017, 17(5):3119-3125.
[68] Liu X, Shi S, Li Y, et al. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants[J]. Angewandte Chemie, International Edition in English, 2017, 56(41):12594-12598.
[69] Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709):274-279.
[70] Wang J, Lu T, Yang M, et al. Hydrogel 3D printing with the capacitor edge effect[J]. Science Advances, 2019, 5(3):eaau8769.
[71] Wang J, Yu Y, Guo J, et al. The construction and application of three-dimensional biomaterials[J]. Advanced Biosystems, 2020, doi:10.1002/adbi.201900238.
[72] Hinton T J, Jallerat Q, Palchesko R N, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science Advances, 2015, 1(9):e1500758.
[73] Miesch C, Kosif I, Lee E, et al. Nanoparticle-stabilized double emulsions and compressed droplets[J]. Angewandte Chemie, International Edition in English, 2012, 51(1):145-149.
[74] Tian J, Yuan L, Zhang M, et al. Interface-directed selfassembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization[J]. Langmuir, 2012, 28(25):9365-9371.
[75] Chen T, Colver P J, Bon S a F. Organic-inorganic hybrid hollow spheres prepared from tio2-stabilized pickering emulsion polymerization[J]. Advanced Materials, 2007, 19(17):2286-2289.
[76] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature, 1997, 389(6654):948-951.
[77] Toor A, Lamb S, Helms B A, et al. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants[J]. ACS Nano, 2018, 12(3):2365-2372.
[78] Huang C, Chai Y, Jiang Y, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Letters, 2018, 18(4):2525-2529.
[79] Jiang Y, Lobling T I, Huang C, et al. Interfacial assembly and jamming behavior of polymeric janus particles at liquid interfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(38):33327-33332.
[80] Zhang Z, Jiang Y, Huang C, et al. Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands[J]. Science Advances, 2018, 4(8):eaap8045.
[81] Liu X, Kent N, Ceballos A, et al. Reconfigurable ferromagnetic liquid droplets[J]. Science, 2019, 365(6450):264-267.
[82] Dreyfus R. An attractive, reshapable material[J]. Science, 2019, 365(6450):219.
[83] Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3):99-117.
[84] Song P, Mao X, Ren Y, et al. Buckling effect of sole zeolitic imidazolate framework-8 nanoparticles adsorbed at the water/oil interface[J]. Langmuir, 2020, 36(9):2322-2329.
[85] Zhang W, Tian Y, He H, et al. Recent advances in synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. National Science Review, 2020.
[86] 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的最新研究进展及应用[J]. 材料工程, 2017, 31(5):1-20.
[87] Huang X, Wang L, Lin Y, et al. Autonomic behavior in lipase-active oil droplets[J]. Angewandte Chemie, International Edition in English, 2018, doi:10.1002/anie.201812111.
[88] Kumar B, Patil A J, Mann S. Enzyme-powered motility in buoyant organoclay/DNA protocells[J]. Nature Chemistry, 2018, 10(11):1154-1163.
[89] Hann S D, Lee D, Stebe K J. Tuning interfacial complexation in aqueous two phase systems with polyelectrolytes and nanoparticles for compound all water emulsion bodies (AWE-somes)[J]. Physical Chemistry Chemical Physics, 2017, 19(35):23825-23831.
[90] Hann S D, Stebe K J, Lee D. AWE-somes:All water emulsion bodies with permeable shells and selective compartments[J]. ACS Applied Materials & Interfaces, 2017, 9(29):25023-25028.
[91] Luo G, Yu Y, Yuan Y, et al. Freeform, reconfigurable embedded printing of all-aqueous 3d architectures[J]. Advanced Materials, 2019, 31(49):e1904631.
[92] Oliva R, Banerjee S, Cinar H, et al. Modulation of enzymatic activity by aqueous two-phase systems and pressure-rivalry between kinetic constants[J]. Chemical Communications, 2019, doi:10.1039/C9CC08065A.
[93] Xie G, Forth J, Chai Y, et al. Compartmentalized, allaqueous flow-through-coordinated reaction systems[J]. Chem, 2019, 5(10):2678-2690.
Outlines

/