Review

Recent progress of frontier nuclear energy science and technology

  • YANG Jun ,
  • ZHANG Enhao ,
  • GUO Zhiheng ,
  • WU Aoguang ,
  • WANG Beiqi ,
  • SHI Lihao ,
  • DU Hui ,
  • XU Lejin
Expand
  • Department of Nuclear Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-03-21

  Revised date: 2020-08-11

  Online published: 2020-11-04

Abstract

This paper reviews the recent scientific researches and the important engineering milestones in the key fields of the frontier nuclear energy science and technology, focusing on the research and project progresses in the nuclear energy engineering, the small module reactor, the fusion technology, the space reactor, and the digital reactor. The research and development of the frontier nuclear energy technology is shown to be progressing steadily in general. Small reactors have good application prospects in sea, land and air and will open up a new world of the nuclear energy utilization beyond the traditional commercial nuclear power. The advanced nuclear fuel design, the high-precision numerical simulation and other technologies are important development directions for the nuclear energy safety in the future. With the further innovation and diversity of the technology, the diversified development trend of the nuclear energy is expected to occupy an important position in the global energy structure.

Cite this article

YANG Jun , ZHANG Enhao , GUO Zhiheng , WU Aoguang , WANG Beiqi , SHI Lihao , DU Hui , XU Lejin . Recent progress of frontier nuclear energy science and technology[J]. Science & Technology Review, 2020 , 38(20) : 35 -49 . DOI: 10.3981/j.issn.1000-7857.2020.20.010

References

[1] Nuclear Power in the World Today[EB/OL].[2020-02-21]. https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-theworld-today.aspx.
[2] 世界核电行业发展现状与趋势[J]. 水泵技术, 2019(5):53.
[3] 王树. 世界核电现状[J]. 国外核新闻, 2019(7):22-24.
[4] 龙茂雄. 世界核电发展现状与展望[N]. 中国能源报, 2019-09-16(011).
[5] 伍浩松, 张焰. 法国核工业界明确中长期行动计划[J]. 国外核新闻, 2019(2):1.
[6] 中国核电行业发展现状[J]. 水泵技术, 2019(5):57.
[7] 国务院印发《"十三五" 节能减排综合工作方案》[J]. 中国资源综合利用, 2017, 35(2):57.
[8] 中国核电行业发展现状和前景[J]. 电器工业, 2019(10):59-63.
[9] 我国科研机构中标国际热核聚变实验堆总装核心工程[J]. 设备监理, 2019(7):63.
[10] 电缆网. 中国大陆23台机组获WANO满分评价整体WANO综合评分力拔头筹.[EB/OL]. http://www.elecfans.com/article/83/2020/202004121201662.html, 2020-4-12.
[11] 赵宏, 伍浩松. 英国将资助罗罗小堆研发[J]. 国外核新闻, 2019(9):11.
[12] 伍浩松, 戴定. 法公布小堆设计将与西屋开展合作[J]. 国外核新闻, 2019(10):7.
[13] 伍浩松, 赵宏. 俄将在雅库特建设小堆[J]. 国外核新闻, 2019(10):7.
[14] 伍浩松, 戴定. 加稳步推进小堆示范项目[J]. 国外核新闻, 2019(3):19.
[15] 伍浩松, 张焰. 加正式启动小堆建设环评[J]. 国外核新闻, 2019(8):12.
[16] 伍浩松, 赵宏. 加启动核能研究倡议加速推进小堆研发[J]. 国外核新闻, 2019(8):11.
[17] 伍浩松, 戴定. U-Battery进入加小堆示范项目第二阶段[J]. 国外核新闻, 2019(8):11.
[18] 赵宏, 张焰. 罗研究建设纽斯凯尔小堆的可行性[J]. 国外核新闻, 2019(4):13.
[19] 赵宏, 张焰. 斗山将参与纽斯凯尔小堆开发[J]. 国外核新闻, 2019(5):14.
[20] 赵宏, 伍浩松. 纽斯凯尔与斗山重工开展小堆合作[J]. 国外核新闻, 2019(8):13.
[21] 张焰, 伍浩松. 纽斯凯尔小堆通过第三阶段设计认证评审[J]. 国外核新闻, 2019(9):7-8.
[22] 赵宏, 伍浩松. 美能源部资助三所大学建设小堆模拟器[J]. 国外核新闻, 2019(9):13.
[23] 戴定, 伍浩松. 纽斯凯尔小堆考虑使用金属燃料[J]. 国外核新闻, 2019(6):16.
[24] 张慧. 中核启动小堆核电技术"玲龙一号" 示范工程[EB/OL].[2019-07-18]. https://finance.sina.com.cn/stock/relnews/cn/2019-07-18/doc-ihytcitm2914014.shtml.
[25] 中广核海上小型堆ACPR50S正式纳入IAEA全球小型堆发展路线[EB/OL].[2016-09-13]. http://np.chinapower.com.cn/201609/13/0053309.html.
[26] 揭秘中国迷你"核电宝":一台能供50000户[EB/OL].[2019-09-11]. http://power.in-en.com/html/power-2333934.shtml.
[27] 新型反应堆获突破核电宝来临国产核航母还有多远[EB/OL].[2019-10-13]. http://mil.news.sina.com.cn/jssd/2019-10-13/doc-iicezuev1814201.shtml.
[28] 邱阳, 罗英, 杨敏, 等. 模块式小型堆反应堆压力容器内支承环和筒体焊接残余应力数值计算[J]. 电焊机, 2019, 49(7):1-6.
[29] 蔡志云, 赵禹, 王保平. 模块式小型堆化学和容积控制系统的仿真分析[J]. 核安全, 2019,18(3):62-66.
[30] 高颖贤, 张航, 邱志方, 等. 确定论与概率论相结合的小型模块化压水堆应急堆芯冷却系统配置研究[J]. 核动力工程, 2019, 40(3):175-179.
[31] 雷驰, 吴宏春, 曹良志, 等. 小型可运输长寿命铅铋冷却快堆堆芯设计研究[J]. 原子能科学技术, 2019, 53(8):1451-1458.
[32] 陈振佳, 杨红义, 余华金, 等. 小型模块化钠冷快堆非能动余热排出系统分析研究[J]. 原子能科学技术, 2019, 53(8):1417-1423.
[33] 赵孝, 张震, 杨星团, 等. 小型模块式反应堆螺旋管蒸汽发生器设计和热工水力分析[J]. 原子能科学技术, 2019, 53(12):2361-2366.
[34] 张莉. 2019年国外核科技工业发展回顾[J]. 国防科技工业, 2019(12):14-18.
[35] 李永, 周成, 吕征, 等. 大功率空间核电推进技术研究进展[J]. 推进技术, 2020, 41(1):12-27.
[36] 李华琪, 杨宁, 田晓艳, 等. 热管冷却双模式空间堆的初步概念[J]. 现代应用物理, 2017, 8(4):80-85.
[37] 林庆国, 王浩明, 程诚. 基于氢化镁的核电/核热双模共质空间核动力技术[J]. 上海航天, 2019, 36(6):114-120, 133.
[38] 王钊, 夏陈超, 康志宇, 等. 模块化核动力航天器设计及其关键技术[J]. 上海航天, 2019, 36(6):141-147.
[39] 沈华亚, 陈法国, 韩毅, 等. 金属氢化物中子屏蔽应用研究现状[J]. 材料导报, 2019, 33(Suppl 2):484-487.
[40] Postion D I, Gibson M, Mcclure P. Kilopower reactors for potential space exploration missions[C]//Nuclear and Emerging Techologies for Space, American Nuclear Society Topical Meeting ANS. Richland, WA. 2019.
[41] 何宇豪, 孟涛, 卢瑞博, 等. 空间核反应堆电源研究进展[J]. 上海航天, 2019, 36(6):126-133.
[42] Eades M, Reed M, Morrison C, et al. The pylon:Commercial LEU nuclear fission power for lunar martian, and deep space applications[C]//Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting. Richland, WA. 2019.
[43] Herringa J S, Mackwellb S, Pestakc C, et al. Small modular fission reactors for space applications[C]//Nuclear and Emerging Technologies for Space, American Nuclear Society Topical Meeting. Richland, WA. 2019.
[44] 伍浩松, 戴定. 英完成一座聚变设施的建设和调试[J]. 国外核新闻, 2019(3):20.
[45] 赵宏, 伍浩松. 克罗地亚建成一座聚变支持设施[J]. 国外核新闻, 2019(8):12.
[46] 张焰, 伍浩松. 英国拟建世界首座商业核聚变电厂[J]. 国外核新闻, 2019(11):12.
[47] 国家大科学装置"聚变堆主机研究设施" 正式开工建设[J]. 高科技与产业化, 2019(11):82.
[48] 伍浩松, 王树. 美能源部为国际聚变研究资助3000万美元[J]. 国外核新闻, 2019(4):4.
[49] 张微, 杜广, 徐国飞. 核聚变发电的研究现状与发展趋势[J]. 产业与科技论坛, 2019, 18(8):58-60.
[50] 中国科研机构中标国际热核聚变实验堆总装核心工程[J]. 电力设备管理, 2019(8):10.
[51] 我国成功研制ITER首个大型超导磁体线圈[J]. 高科技与产业化, 2019(11):74.
[52] 伍浩松, 赵宏. ITER托卡马克综合体完成土木工程建设[J]. 国外核新闻, 2019(12):11.
[53] 杨青巍, 丁玄同, 严龙文, 等. 受控热核聚变研究进展[J]. 中国核电, 2019, 12(5):507-513.
[54] 黄卫, 陆坤, 郑金星, 等. CFETR纵场超导磁体CICC导体低温冷却设计与分析[J]. 核技术, 2019, 42(12):85-91.
[55] 韩厚祥. CFETR中心螺线管超导模型线圈绕制成形关键技术研究[D]. 中国科学技术大学, 2019.
[56] 2019年全球十大新兴技术榜单发布[EB/OL].[2019-07-04]. https://huanqiukexue.com/a/qianyan/xinxi__nenyuan/2019/0704/28502.html.
[57] 位东辉, 吴亚文, 贺秀杰, 等. 锆合金表面CrAl涂层的高温氧化与拉伸行为[J]. 中国表面工程, 2019, 32(2):44-53.
[58] Zhang J, Tian Z, Zhang H, et al. On the chemical compatibility between Zr-4 substrate and well-bonded Cr2AlC coating[J]. Journal of Materials Science & Technology, 2019, 35(1):1-5.
[59] Chen Q S, Liu C H, Long J P, et al. Microstructure and corrosion characteristics of CrCuFeMoNi HEA coatings with different compositions in high-temperature and high-pressure water[J]. Materials Research Express, 2019, 6(8):86511.
[60] Alat E, Brova M, Younker I, et al. Neutronic and mechanical evaluation of rare earth doped and undoped nitride-based coatings for accident tolerant fuels[J]. Journal of Nuclear Materials, 2019, 518:419-430.
[61] He S, Cai J J. Thermal hydraulic analysis of the PWR with high uranium density accident tolerant fuels under accident transients with and without reactivity[J]. Journal of Nuclear Technology, 2019, 355:110358.
[62] He Y, Shirvan K, Wu Y, et al. Integrating a multi-layer deformation model in FRAPTRAN for accident Tolerant fuel analysis[J]. Annals of Nuclear Energy, 2019, 133:441-454.
[63] Hong K, Barber J, Thouless M, et al. Cracking of Crcoated accident-tolerant fuel during normal operation and under power-ramping conditions[J]. Nuclear Engineering and Design, 2019, 353:110275.
[64] 岳慧芳, 冯可芹, 庞华, 等. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(A01):321-325.
[65] Tan Z X, Cai J J. Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors[J]. Nuclear Science and Techniques, 2019, 30(3):128-136.
[66] 中广核开始国内ATF燃料入堆辐照测试工作[EB/OL].[2019-01-22]. http://www.cgnpc.com.cn/cgn/c100944/201901/22/content_916216b8da314c03b1785b9d798c163d.shtml.
[67] 中广核举办2019事故容错燃料国际研讨会[EB/OL].[2019-05-20]. http://www.cnpri.com.cn/cnpri/c102033/201905/20/content_5620b4f3f05c4327928be8854c3697d3.shtml.
[68] 王昱, 潘钱付. 核动力院核电耐事故燃料技术取得新突破[EB/OL].[2019-11-29]. https://mp.weixin.qq.com/s/gaCN0_auuFyAq2CCJEl-XA.
[69] 王兴春. 美能源部资助西屋电气开发耐事故核燃料[EB/OL].[2019-01-23]. https://mp.weixin.qq.com/s/ZHXJusgkcq6WcVzaoy9N3A.
[70] 王兴春. 美国商用反应堆首次安装西屋电气生产的耐事故核燃料[EB/OL].[2019-09-12]. https://mp.weixin.qq.com/s/mjqFFZdlO2WKmVeaxDlsQg.
[71] 仇若萌. 美国能源部为耐事故燃料开发提供资金[EB/OL].[2019-02-19]. https://mp.weixin.qq.com/s/Pbk4xeq_M_fUIE-74Gn3A.
[72] 王兴春. 美国核电站开始使用法马通公司增强型耐事故核燃料测试组件[EB/OL].[2019-04-09]. https://mp.weixin.qq.com/s/dD2Z8lm3jbsvDwOeiQzrwA.
[73] 王兴春. 俄罗斯开始测试压水堆耐事故燃料[EB/OL].[2019-01-31]. https://mp.weixin.qq.com/s/ovgN5Ri050Zg_c02nZnqGw.
[74] 张馨玉. 俄罗斯耐事故燃料完成首次测试[EB/OL].[2019-11-04]. https://mp.weixin.qq.com/s/L7sXcoBFQqiMMX9QzXXN2w.
[75] 王兴春. 俄罗斯制造出首批用于商用反应堆的耐事故核燃料[EB/OL].[2019-12-30]. https://mp.weixin.qq.com/s/WixAIMdC1w8jqhPG3q4QUg.
[76] 杨文, 胡长军, 刘天才, 等. 数值反应堆及CVR1.0研究进展[J]. 原子能科学技术, 2019(10):1821-1832.
[77] Turner J A, Clarno K, Sieger M, et al. The virtual environment for reactor applications (VERA):Design and architecture[J]. Journal of Computational Physics, 2016, 326:544-568.
[78] Kim S K, Williams L M, Wiarda D, et al. Development of the multigroup cross section library for the CASL neutronics simulator MPACT:Method and procedure[J]. Annals of Nuclear Energy, 2019, 133:46-58.
[79] Gaston D, Newman C, Hansen G, et al. MOOSE:A parallel computational framework for coupled systems of nonlinear equations[J]. Nuclear Engineering and Design, 2019, 239(10):1768-1778.
[80] Franceschini F, Godfrey A, Stimpson S, et al. AP1000 PWR startup core modeling and simulation with VERACS[C]//Proceedings of the Advances in Nuclear Fuel Management. Illinois, USA:ANS, 2015.
[81] Godfrey A T, Collins B S, Gentry C A, et al. Watts bar unit startup results with VERA[R]. Tennessee, USA:ORNL, 2017.
[82] Richard C S. Overview of DOE-NE NEAMS Program[R]. U. S. Department of Energy, 2019.
[83] Chauliac C, Aragones M J, Bestion D, et al. NURESIMA European simulation platform for nuclear reactor safety:Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9):3416-3426.
[84] EDF Energy. Simulation softwares[EB/OL].[2019-03-04]. http//www.edf.fr/en/the-edf-group/word-s-largestpower-company/activities/research-and-development/scientific-communities/simulation-softwares.
[85] 葛炜, 杨燕华, 刘飒, 等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源, 2016, 38(7):39-44.
[86] 刘东, 李庆, 卢宗健, 等."华龙一号" 设计分析软件包NESTOR的研发与应用[J]. 中国核电, 2017, 10(4):532-536.
[87] 郑明光. 从AP1000到CAP1400, 我国先进三代非能动核电技术自主化历程[J]. 中国核电, 2018, 11(1):41-45.
[88] 朱学蕊. 中国能源报[N]. 2015-11-16(12).
[89] Hu L Q, Long P C, Song J, et al. SuperMC cloud for nuclear design and safety evaluation[J]. Annals of Nuclear Energy, 2019, 134:424-431.
Outlines

/