[1] 彭苏萍, 张博, 王佟. 我国煤炭资源"井" 字形分布特征与可持续发展战略[J]. 中国工程科学, 2015, 17(9):29-35.
[2] 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(5):1210-1219.
[3] 余力, 鲍德佑. 煤炭地下气化与氢能的开发[J]. 科技导报, 1997(6):39-41, 57.
[4] 余力, 梁杰, 余学东. 煤炭资源开发与利用新方法-煤炭地下气化技术[J]. 科技导报, 1999(4):33-35.
[5] Blinderman M S. Application of the exergy UCG technology in international UCG projects[C/OL]//2017 Institute of Physics(IOP) Conference Series:Proceedings of Workshop on Challenges and Opportunities of Underground Coal Gasification. London,UK:Institute of Physics Publishing, 2017, 76(1):012009. https://iopscience.iop.org/issue/1755-1315/76/1.
[6] 岑可法. 先进清洁煤燃烧与气化技术[M]. 北京:科学出版社, 2014:322-346.
[7] Lee S, Speight J, Loyalka S K. Handbook of alternative fuel technologies[M]. Boca Raton, USA:Chemical Rubber Company Press, 2015.
[8] 梁杰, 王张卿. 煤炭地下气化基础:基于三区分布的煤炭地下气化物料与能量平衡模型[M]. 北京:科学出版社, 2017.
[9] 梁杰. 煤炭地下气化技术进展[J]. 煤炭工程, 2017, 49(8):1-4.
[10] Lazarenko S N, Kreinin E V. Underground coal gasification in Kuzbass:New opportunities[R/OL]. Kemerovo, Russia:Institute of Coal and Geochemistry, Siberian Branch of the Russian Academy of Sciences, 2006.http://www.iccms.sbras.ru.
[11] 梁杰, 崔勇, 王张卿, 等. 煤炭地下气化炉型及工艺[J]. 煤炭科学技术, 2013, 41(5):10-15.
[12] Saptikov I M. History of UCG development in the USSR[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:25-58. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[13] 梁杰, 余力."长通道、大断面" 煤炭地下气化新工艺[J]. 中国煤炭, 2002, 28(12):10-12.
[14] 梁杰, 朗庆田, 余力, 等. 缓倾斜薄煤层地下气化试验研究[J]. 煤炭学报, 2003, 28(2):126-130.
[15] 梁杰, 刘淑琴, 赵丽梅, 等. 太原东山煤地下气化模型试验研究[J]. 燃料化学学报, 2004, 32(1):12-17.
[16] 梁杰, 张彦春, 魏传玉, 等. 昔阳无烟煤地下气化模型试验研究[J]. 中国矿业大学学报, 2006, 35(1):25-28.
[17] 柴兆喜, 董双干, 聂世瑄, 等. 我国矿井气化采煤技术的试验及其产业化研究[J]. 中国煤炭, 2002, 28(12):11-13.
[18] 刘淑琴, 陈峰, 庞旭林, 等. 煤炭地下气化反应过程分析及稳定控制工艺[J]. 煤炭科学技术, 2015, 43(1):125-128.
[19] Camp D W. Underground coal gasification research and development in the United States[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:60-125. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[20] Burton E, Friedmann J, Upadhye R. Best practices in underground coal gasification[R/OL]. Livermore, USA:Lawrence Livermore National Laboratory, 2017. https://www.osti.gov/biblio/1580018.
[21] Walker L. The development of UCG in Australia[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:175-212. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[22] 杨兰和, 宋全友, 李耀娟. 煤炭地下气化工程[M]. 徐州:中国矿业大学出版社, 2001.
[23] Sury M, White M, Kirton J, et al. Review of environmental issues of underground coal gasification[R/OL]. London,United Kingdom, Department of Trade and Industry, 2004, https://www.osti.gov/etdeweb/biblio/20567958.
[24] Perkins G, Sahajwalla V. A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification[J]. Energy & Fuels, 2006, 20(2):596-608.
[25] Perkins G, Du Toit E, Cochrane G, et al. Overview of underground coal gasification operations at Chinchilla, Australia[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2016, 38(24):3639-3646.
[26] Perkins G. Underground coal gasification-Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67:158-187.
[27] Li Y, Liang X, Liang J. An overview of the Chinese UCG Program[J]. Data Science Journal, 2007, 6:460-466.
[28] Britten J A, Thorsness C B. Modeling thermal and material interactions between a reacting char bed and a gasifying/spalling coal proof[R/OL]. Livermore USA:Lawrence Livermore National Laboratory, 1985. https://www.osti.gov/biblio/5435763.
[29] Shafirovich E, Varma A. Underground coal gasification:A brief review of current status[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):7865-7875.
[30] Bhutto A W, Bazmi A A, Zahedi G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214.
[31] Mao F. Underground coal gasification (UCG):A new trend of supply-side economics of fossil fuels[J]. Natural Gas Industry B, 2016, 3(4):312-322.
[32] Blinderman M S, Klimenko A Y. Underground coal gasification and combustion[M/OL]. London,UK:Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[33] Oliver R L, Mason G M, Spackman LK. Field and laboratory results from the TONO i (CRIP) UCG cavity excavation project, Widco mine site, centralia, Washington[J]. Fuel Science and Technology International, 1989, 7(8):1059-1120.
[34] Elliott M A. Coal utilization chemistry:Volume 2[M/OL]. New York:John Wiely & Sons Inc, 1991. https://www.osti.gov/biblio/6001785.
[35] Mastalerz M E, Droniak A, Parke M, et al. Site evaluation for subsidence risk, hydrology, and characterization of Indiana coals for underground coal gasification(UCG)[R/OL]. West Lafayette:Center for Coal Technology Research, 2011. http://www.purdue.edu/discoverypark/energy/CCTR/SiteEval-IGS_March2011.php.
[36] Beath A, Craig S, Littleboy A, et al. Underground coal gasification:evaluating environmental barriers[R/OL]. Brisbane, Australia:CSIRO Division of Exploration and Mining, 2004. https://publications.csiro.au/rpr/pub?pid=legacy:2099.
[37] 刘淑琴, 周蓉, 潘佳, 等. 煤炭地下气化选址决策及地下水污染防控[J]. 煤炭科学技术, 2013, 41(5):23-27.
[38] Mostade M. Underground coal gasification(UCG) -the path to commercialization[J]. Coal Preparation Society of India Journal, 2014, 6(15):18-37.
[39] Green M. Recent developments and current position of underground coal gasification[J]. Journal of Power and Energy. 2018, 232(1):39-46.
[40] 刘建明. 煤炭地下气化燃空区扩展及顶板稳定性研究[D]. 徐州:中国矿业大学, 2014.
[41] 陆银龙, 王连国, 唐芙蓉, 等. 煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J]. 煤炭学报, 2012, 37(8):1292-1298.
[42] 辛林. 马蹄沟煤矿地下气化开采覆岩移动规律研究[D]. 徐州:中国矿业大学, 2014.
[43] Laouafa F, Farret R, Vidal-Gilbert S, et al. Overview and modeling of mechanical and thermo mechanical impact of underground coal gasification exploitation[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(4):547-576.
[44] Yang D, Sarhosis V, Sheng Y. Thermal-mechanical modeling around the cavities of underground coal gasification[J]. Journal of the Energy Institute, 2014, 87(4):321-329.
[45] Derbin Y, Walker J, Wanatowski D, et al. Soviet experience of underground coal gasification focusing on surface subsidence[J]. Journal of Zhejiang University-Science A, 2015, 16(10):839-850.
[46] Najafi M, Jalali S M E, KhaloKakaie R, et al. Prediction of cavity growth rate during underground coal gasification using multiple regression analysis[J]. International Journal of Coal Science & Technology, 2015, 2(4):318-324.
[47] 李怀展. 无井式煤炭地下气化岩层移动机理与控制研究[D]. 徐州:中国矿业大学, 2017.
[48] 曹立斌, 孟永良, 周建兰. 电阻率层析成像技术的回顾与展望[J]. 勘探地球物理进展, 2004, 27(3):170-173.
[49] Mellors R, Yang X, White J A, et al. Advanced geophysical underground coal gasification monitoring[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(4):487-500.
[50] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
[51] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
[52] 杨兰和, 梁杰. 煤炭地下气化燃空区范围TEM探测方法[J]. 南京理工大学学报(自然科学版), 2001, 25(2):200-204.
[53] 陈启辉, 梁杰, 余力, 等. 瞬变电磁法探测煤炭地下气化燃空区扩展的试验研究[J]. 山东建筑大学学报, 2007, 22(4):288-292.
[54] 郑月. 俄罗斯水平井地质导向钻井技术现状及发展趋势[D]. 青岛:中国石油大学, 2013.
[55] 胡安. 煤层气水平井与定向井连通技术研究与应用[D]. 青岛:中国石油大学, 2013.
[56] 熊亮, 张小连. 煤层气U型对接井施工关键技术[J]. 探矿工程(岩土钻掘工程), 2018, 45(2):33-35, 51.
[57] Abdel-Ghany M A, Siso S, Hassan A M, et al. New technology application, radial drilling Petrobel, first well in Egypt[C/OL]//Proceedings of 2011 Offshore Mediterranean Conference and Exhibition. Washington, USA:Society of Petroleum Engineers, 2011. https://www.onepetro.org.
[58] 杨永印, 杨海滨, 王瑞和, 等. 超短半径辐射分支水平钻井技术在韦5井的应用[J]. 石油钻采工艺, 2006, 28(2):11-14.
[59] 张恒, 王大力, 王广新. 径向水平井在大庆油田应用的可行性探讨[J]. 西部探矿工程, 2009, 21(9):73-76.
[60] 李欢欢. 超短半径水平井的优化设计[J]. 探矿工程-岩土钻掘工程, 2012, 39(4):27-30.
[61] Bruni M A, Biasotti J H, Salomone G D. Radial drilling in Argentina[C/OL]. 2007 Latin American & Caribbean Petroleum Engineering Conference. Washington, USA:Society of Petroleum Engineers, 2007. https://www.onepetro.org.
[62] 迟焕鹏, 李根生, 黄中伟, 等. 水力喷射径向水平井技术研究现状及分析[J]. 钻采工艺, 2013, 36(4):119-124.
[63] Ahmed H K. A technical review of radial jet drilling[J]. Journal of Petroleum and Gas Engineering, 2017, 8(8):79-89.
[64] 梁杰, 梁鲲, 徐斌, 等. 化石能源低碳循环开采技术及新疆示范工程[J]. 工程研究:跨学科视野中的工程, 2016, 8(4):358-364.
[65] 杨震, 孔令峰, 孙万军, 等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业, 2015, 35(8):99-105.
[66] 吴昌华, 尹乐, 张翔, 等. CCUS在中国:18个热点问题[R/OL]. 北京:气候组织北京办公室, 2011. http://mfiles.sohu.com/green/CCUS_in_China.pdf.
[67] 邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2):1-10.
[68] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1):1-6.
[69] 葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报, 2017, 46(4):679-691.
[70] 马东民, 蔺亚兵, 张遂安. 煤层气升温解吸特征分析与应用[J]. 中国煤层气, 2011, 8(3):11-15.
[71] 赵昱. 一种煤层气开采新技术:CN101113666[P]. 2008-01-30.
[72] 冯增朝, 赵阳升, 吕兆兴, 等. 加热煤层抽采煤层气的方法:CN101418679[P]. 2009-04-29.
[73] 梁杰, 刘丽梅, 李延生, 等. 煤层气热采新工艺:CN101382061[P]. 2009-03-11.
[74] 陈峰, 张树川, 甘中学. 一种煤层气与煤共采方法:CN103670338A[P]. 2014-03-26.
[75] Mastalerz M E, Droniak A, Parke M, et al. Site evaluation for subsidence risk, hydrology, and characterization of Indiana coals for underground coal gasification(UCG)[R/OL]. West Lafayette USA:Center for Coal Technology Research, 2011. http://www.purdue.edu/discoverypark/energy/CCTR/event/cctr_meetings_aug2011
[76] Creedy D P, Ganner K, Oakey J E. Clean energy from underground coal gasification in China:United Kingdom, Report No.COAL R250, 2004[R/OL]. London, UK:United Kingdom Department of Trade and Industry, 2004. https://www.osti.gov/etdeweb/biblio/20490011.
[77] Jiang L, Chen Z, Ali S M F. Heavy oil mobilization from underground coal gasification in a contiguous coal seam[J]. Fuel, 2019, 249:219-232.