Review

New development of coal gasification technology

  • YANG Fu ,
  • DUAN Zhonghui ,
  • MA Dongmin ,
  • TIAN Tao ,
  • FU Deliang ,
  • HE Dan
Expand
  • 1. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, China;
    2. Shaanxi Coal Geology Group Co., Ltd., Xi'an 710021, China;
    3. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China

Received date: 2019-03-31

  Revised date: 2020-07-15

  Online published: 2020-11-04

Abstract

Underground coal gasification(UCG) is an effective means to exploit deep coal resources, and is a technology of clean and efficient development and utilization of energies. As compared with the traditional coal mining and surface gasification, it enjoys obvious advantages of economy, safety and cleanness, among other advantages. This paper reviews the development history, the gasification principle and the current situation of different gasification processes in the coal underground gasification, and it is pointed out that no-shaft underground coal gasification technology is the development trend in the future. A brief assessment of the latest advances and the development tendency is made, including the site selection, the selective gasifier, the goaf control and detection, the ultra-short horizontal well technology, the classification and the comprehensive utilization of gasification products. It is shown that combined application of the UCG-CCUS technology will make the underground coal gasification truly a new generation of green coal mining technology.

Cite this article

YANG Fu , DUAN Zhonghui , MA Dongmin , TIAN Tao , FU Deliang , HE Dan . New development of coal gasification technology[J]. Science & Technology Review, 2020 , 38(20) : 71 -85 . DOI: 10.3981/j.issn.1000-7857.2020.20.013

References

[1] 彭苏萍, 张博, 王佟. 我国煤炭资源"井" 字形分布特征与可持续发展战略[J]. 中国工程科学, 2015, 17(9):29-35.
[2] 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(5):1210-1219.
[3] 余力, 鲍德佑. 煤炭地下气化与氢能的开发[J]. 科技导报, 1997(6):39-41, 57.
[4] 余力, 梁杰, 余学东. 煤炭资源开发与利用新方法-煤炭地下气化技术[J]. 科技导报, 1999(4):33-35.
[5] Blinderman M S. Application of the exergy UCG technology in international UCG projects[C/OL]//2017 Institute of Physics(IOP) Conference Series:Proceedings of Workshop on Challenges and Opportunities of Underground Coal Gasification. London,UK:Institute of Physics Publishing, 2017, 76(1):012009. https://iopscience.iop.org/issue/1755-1315/76/1.
[6] 岑可法. 先进清洁煤燃烧与气化技术[M]. 北京:科学出版社, 2014:322-346.
[7] Lee S, Speight J, Loyalka S K. Handbook of alternative fuel technologies[M]. Boca Raton, USA:Chemical Rubber Company Press, 2015.
[8] 梁杰, 王张卿. 煤炭地下气化基础:基于三区分布的煤炭地下气化物料与能量平衡模型[M]. 北京:科学出版社, 2017.
[9] 梁杰. 煤炭地下气化技术进展[J]. 煤炭工程, 2017, 49(8):1-4.
[10] Lazarenko S N, Kreinin E V. Underground coal gasification in Kuzbass:New opportunities[R/OL]. Kemerovo, Russia:Institute of Coal and Geochemistry, Siberian Branch of the Russian Academy of Sciences, 2006.http://www.iccms.sbras.ru.
[11] 梁杰, 崔勇, 王张卿, 等. 煤炭地下气化炉型及工艺[J]. 煤炭科学技术, 2013, 41(5):10-15.
[12] Saptikov I M. History of UCG development in the USSR[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:25-58. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[13] 梁杰, 余力."长通道、大断面" 煤炭地下气化新工艺[J]. 中国煤炭, 2002, 28(12):10-12.
[14] 梁杰, 朗庆田, 余力, 等. 缓倾斜薄煤层地下气化试验研究[J]. 煤炭学报, 2003, 28(2):126-130.
[15] 梁杰, 刘淑琴, 赵丽梅, 等. 太原东山煤地下气化模型试验研究[J]. 燃料化学学报, 2004, 32(1):12-17.
[16] 梁杰, 张彦春, 魏传玉, 等. 昔阳无烟煤地下气化模型试验研究[J]. 中国矿业大学学报, 2006, 35(1):25-28.
[17] 柴兆喜, 董双干, 聂世瑄, 等. 我国矿井气化采煤技术的试验及其产业化研究[J]. 中国煤炭, 2002, 28(12):11-13.
[18] 刘淑琴, 陈峰, 庞旭林, 等. 煤炭地下气化反应过程分析及稳定控制工艺[J]. 煤炭科学技术, 2015, 43(1):125-128.
[19] Camp D W. Underground coal gasification research and development in the United States[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:60-125. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[20] Burton E, Friedmann J, Upadhye R. Best practices in underground coal gasification[R/OL]. Livermore, USA:Lawrence Livermore National Laboratory, 2017. https://www.osti.gov/biblio/1580018.
[21] Walker L. The development of UCG in Australia[M/OL]//Blinderman M S, Alexander Y K. Underground Coal Gasification and Combustion. London, UK:Woodhead Publishing, 2017:175-212. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[22] 杨兰和, 宋全友, 李耀娟. 煤炭地下气化工程[M]. 徐州:中国矿业大学出版社, 2001.
[23] Sury M, White M, Kirton J, et al. Review of environmental issues of underground coal gasification[R/OL]. London,United Kingdom, Department of Trade and Industry, 2004, https://www.osti.gov/etdeweb/biblio/20567958.
[24] Perkins G, Sahajwalla V. A numerical study of the effects of operating conditions and coal properties on cavity growth in underground coal gasification[J]. Energy & Fuels, 2006, 20(2):596-608.
[25] Perkins G, Du Toit E, Cochrane G, et al. Overview of underground coal gasification operations at Chinchilla, Australia[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2016, 38(24):3639-3646.
[26] Perkins G. Underground coal gasification-Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67:158-187.
[27] Li Y, Liang X, Liang J. An overview of the Chinese UCG Program[J]. Data Science Journal, 2007, 6:460-466.
[28] Britten J A, Thorsness C B. Modeling thermal and material interactions between a reacting char bed and a gasifying/spalling coal proof[R/OL]. Livermore USA:Lawrence Livermore National Laboratory, 1985. https://www.osti.gov/biblio/5435763.
[29] Shafirovich E, Varma A. Underground coal gasification:A brief review of current status[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):7865-7875.
[30] Bhutto A W, Bazmi A A, Zahedi G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214.
[31] Mao F. Underground coal gasification (UCG):A new trend of supply-side economics of fossil fuels[J]. Natural Gas Industry B, 2016, 3(4):312-322.
[32] Blinderman M S, Klimenko A Y. Underground coal gasification and combustion[M/OL]. London,UK:Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-100313-8.00003-7.
[33] Oliver R L, Mason G M, Spackman LK. Field and laboratory results from the TONO i (CRIP) UCG cavity excavation project, Widco mine site, centralia, Washington[J]. Fuel Science and Technology International, 1989, 7(8):1059-1120.
[34] Elliott M A. Coal utilization chemistry:Volume 2[M/OL]. New York:John Wiely & Sons Inc, 1991. https://www.osti.gov/biblio/6001785.
[35] Mastalerz M E, Droniak A, Parke M, et al. Site evaluation for subsidence risk, hydrology, and characterization of Indiana coals for underground coal gasification(UCG)[R/OL]. West Lafayette:Center for Coal Technology Research, 2011. http://www.purdue.edu/discoverypark/energy/CCTR/SiteEval-IGS_March2011.php.
[36] Beath A, Craig S, Littleboy A, et al. Underground coal gasification:evaluating environmental barriers[R/OL]. Brisbane, Australia:CSIRO Division of Exploration and Mining, 2004. https://publications.csiro.au/rpr/pub?pid=legacy:2099.
[37] 刘淑琴, 周蓉, 潘佳, 等. 煤炭地下气化选址决策及地下水污染防控[J]. 煤炭科学技术, 2013, 41(5):23-27.
[38] Mostade M. Underground coal gasification(UCG) -the path to commercialization[J]. Coal Preparation Society of India Journal, 2014, 6(15):18-37.
[39] Green M. Recent developments and current position of underground coal gasification[J]. Journal of Power and Energy. 2018, 232(1):39-46.
[40] 刘建明. 煤炭地下气化燃空区扩展及顶板稳定性研究[D]. 徐州:中国矿业大学, 2014.
[41] 陆银龙, 王连国, 唐芙蓉, 等. 煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J]. 煤炭学报, 2012, 37(8):1292-1298.
[42] 辛林. 马蹄沟煤矿地下气化开采覆岩移动规律研究[D]. 徐州:中国矿业大学, 2014.
[43] Laouafa F, Farret R, Vidal-Gilbert S, et al. Overview and modeling of mechanical and thermo mechanical impact of underground coal gasification exploitation[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(4):547-576.
[44] Yang D, Sarhosis V, Sheng Y. Thermal-mechanical modeling around the cavities of underground coal gasification[J]. Journal of the Energy Institute, 2014, 87(4):321-329.
[45] Derbin Y, Walker J, Wanatowski D, et al. Soviet experience of underground coal gasification focusing on surface subsidence[J]. Journal of Zhejiang University-Science A, 2015, 16(10):839-850.
[46] Najafi M, Jalali S M E, KhaloKakaie R, et al. Prediction of cavity growth rate during underground coal gasification using multiple regression analysis[J]. International Journal of Coal Science & Technology, 2015, 2(4):318-324.
[47] 李怀展. 无井式煤炭地下气化岩层移动机理与控制研究[D]. 徐州:中国矿业大学, 2017.
[48] 曹立斌, 孟永良, 周建兰. 电阻率层析成像技术的回顾与展望[J]. 勘探地球物理进展, 2004, 27(3):170-173.
[49] Mellors R, Yang X, White J A, et al. Advanced geophysical underground coal gasification monitoring[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(4):487-500.
[50] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
[51] 薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
[52] 杨兰和, 梁杰. 煤炭地下气化燃空区范围TEM探测方法[J]. 南京理工大学学报(自然科学版), 2001, 25(2):200-204.
[53] 陈启辉, 梁杰, 余力, 等. 瞬变电磁法探测煤炭地下气化燃空区扩展的试验研究[J]. 山东建筑大学学报, 2007, 22(4):288-292.
[54] 郑月. 俄罗斯水平井地质导向钻井技术现状及发展趋势[D]. 青岛:中国石油大学, 2013.
[55] 胡安. 煤层气水平井与定向井连通技术研究与应用[D]. 青岛:中国石油大学, 2013.
[56] 熊亮, 张小连. 煤层气U型对接井施工关键技术[J]. 探矿工程(岩土钻掘工程), 2018, 45(2):33-35, 51.
[57] Abdel-Ghany M A, Siso S, Hassan A M, et al. New technology application, radial drilling Petrobel, first well in Egypt[C/OL]//Proceedings of 2011 Offshore Mediterranean Conference and Exhibition. Washington, USA:Society of Petroleum Engineers, 2011. https://www.onepetro.org.
[58] 杨永印, 杨海滨, 王瑞和, 等. 超短半径辐射分支水平钻井技术在韦5井的应用[J]. 石油钻采工艺, 2006, 28(2):11-14.
[59] 张恒, 王大力, 王广新. 径向水平井在大庆油田应用的可行性探讨[J]. 西部探矿工程, 2009, 21(9):73-76.
[60] 李欢欢. 超短半径水平井的优化设计[J]. 探矿工程-岩土钻掘工程, 2012, 39(4):27-30.
[61] Bruni M A, Biasotti J H, Salomone G D. Radial drilling in Argentina[C/OL]. 2007 Latin American & Caribbean Petroleum Engineering Conference. Washington, USA:Society of Petroleum Engineers, 2007. https://www.onepetro.org.
[62] 迟焕鹏, 李根生, 黄中伟, 等. 水力喷射径向水平井技术研究现状及分析[J]. 钻采工艺, 2013, 36(4):119-124.
[63] Ahmed H K. A technical review of radial jet drilling[J]. Journal of Petroleum and Gas Engineering, 2017, 8(8):79-89.
[64] 梁杰, 梁鲲, 徐斌, 等. 化石能源低碳循环开采技术及新疆示范工程[J]. 工程研究:跨学科视野中的工程, 2016, 8(4):358-364.
[65] 杨震, 孔令峰, 孙万军, 等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业, 2015, 35(8):99-105.
[66] 吴昌华, 尹乐, 张翔, 等. CCUS在中国:18个热点问题[R/OL]. 北京:气候组织北京办公室, 2011. http://mfiles.sohu.com/green/CCUS_in_China.pdf.
[67] 邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发, 2019, 46(2):1-10.
[68] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1):1-6.
[69] 葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报, 2017, 46(4):679-691.
[70] 马东民, 蔺亚兵, 张遂安. 煤层气升温解吸特征分析与应用[J]. 中国煤层气, 2011, 8(3):11-15.
[71] 赵昱. 一种煤层气开采新技术:CN101113666[P]. 2008-01-30.
[72] 冯增朝, 赵阳升, 吕兆兴, 等. 加热煤层抽采煤层气的方法:CN101418679[P]. 2009-04-29.
[73] 梁杰, 刘丽梅, 李延生, 等. 煤层气热采新工艺:CN101382061[P]. 2009-03-11.
[74] 陈峰, 张树川, 甘中学. 一种煤层气与煤共采方法:CN103670338A[P]. 2014-03-26.
[75] Mastalerz M E, Droniak A, Parke M, et al. Site evaluation for subsidence risk, hydrology, and characterization of Indiana coals for underground coal gasification(UCG)[R/OL]. West Lafayette USA:Center for Coal Technology Research, 2011. http://www.purdue.edu/discoverypark/energy/CCTR/event/cctr_meetings_aug2011
[76] Creedy D P, Ganner K, Oakey J E. Clean energy from underground coal gasification in China:United Kingdom, Report No.COAL R250, 2004[R/OL]. London, UK:United Kingdom Department of Trade and Industry, 2004. https://www.osti.gov/etdeweb/biblio/20490011.
[77] Jiang L, Chen Z, Ali S M F. Heavy oil mobilization from underground coal gasification in a contiguous coal seam[J]. Fuel, 2019, 249:219-232.
Outlines

/