Papers

The disruptive technology of recognition based on topic mutation detection: With the drone technology as an example

  • LIU Zhongbao ,
  • KANG Jiaqi ,
  • ZHANG Jing
Expand
  • School of Software, North University of China, Taiyuan 030051, China

Received date: 2020-04-28

  Revised date: 2020-05-27

  Online published: 2020-11-04

Abstract

The disruptive technology is of great strategic significance for the leap-forward development of China's technological innovation. In order to get rid of the situation of the lack of original innovation capabilities, and to deal with the varied key core technologies, the subversive technology identification is of great significance. This paper takes the UAV technology field as an example, reviews 2812 papers and patent data collected in the Web of Science (Wos) paper database and Derwent patent database from 2005 to 2019, with the technology based on the LDA-LSTM text classification algorithm Theme, and the CiteSpace to build a co-occurrence network, to realize the theme mutation detection from the perspective of mutation weight ranking and mutation time period and mutation co-word clustering knowledge map, and to identify the brain-computer interface technology and the gesture control in the UAV interaction The technology is a disruptive technology in this field. Finally, the validity of the recognition framework is verified through patents in the related papers in the field of the drone technology in 2020.

Cite this article

LIU Zhongbao , KANG Jiaqi , ZHANG Jing . The disruptive technology of recognition based on topic mutation detection: With the drone technology as an example[J]. Science & Technology Review, 2020 , 38(20) : 97 -105 . DOI: 10.3981/j.issn.1000-7857.2020.20.015

References

[1] 李政, 刘春平, 罗晖. 浅析颠覆性技术的内涵与培育——重视颠覆性技术背后的基础科学研究[J]. 全球科技经济瞭望, 2017, 31(10):53-61.
[2] Bower J L, Christensen C M. Disruptive technologies:Catching the wave[J]. Harvard Business Review, 1995, 73(1):43-53.
[3] Vojak B A, Chambers F A. Roadmapping disruptive technical threats and opportunities in complex, technologybased subsystems:The SAILS methodology[J]. Technological Forecasting and Social Change, 2004, 71(1):121-139.
[4] Borup M, Brown N, Konrad K, et al. The sociology of expectations in science and technology[J]. Technology Analysis and Strategic Management, 2006, 18(3):285-298.
[5] Shen Y C, Chang S H, Lin G T R, et al. A hybrid selection model for emerging technology[J]. Technological Forecasting and Social Change, 2010, 77(1):151-166.
[6] Carlsen H, Dreborg K H, Godman M, et al. Assessing socially disruptive technological change[J]. Technology in Society, 2010, 32(3):209-218.
[7] 许泽浩. 基于TRIZ理论的颠覆性技术选择环境研究[J]. 工业工程, 2016, 19(4):43-47.
[8] Nagy D, Schuessler J, Dubinsky A. Defining and identifying disruptive innovations[J]. Industrial Marketing Management, 2016, 57(8):119-126.
[9] 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5):654-664.
[10] Buchanan B, Corken R. A toolkit for the systematic analysis of patent data to assess a potentially disruptive technology[R]. London:Intellectual Property Office (United Kingdom), 2010.
[11] Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting and Social Change, 2016, 104(5):16-29.
[12] 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7):165-170.
[13] 苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3):13-20.
[14] 孙轶楠, 杜建, 唐小利. 基于科学论文和专利信息的基因测序技术领域创新态势分析[J]. 中华医学图书情报杂志, 2017, 26(5):31-37.
[15] 张著英, 黄玉龙, 王翰虎. 一个高效的KNN分类算法[J]. 计算机科学, 2008, 35(3):170-172.
[16] 萧嵘, 王继成, 张福炎. 支持向量机理论综述[J]. 计算机科学, 2000, 27(3):1-3.
[17] 陈文, 张恩阳, 赵勇, 等. 基于多分类器协同学习的卷积神经网络训练算法[J]. 计算机科学, 2016, 43(9):223-226.
[18] 任勉, 甘刚. 基于双向LSTM模型的文本情感分类[J]. 计算机工程与设计, 2018, 39(7):272-276.
[19] Blei D M, Ng A Y, Jordan M I, et al. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(8):993-1022.
[20] Kleinberg J. Bursty and hierarchical structure in streams[J]. Data Mining & Knowledge Discovery, 2003, 4:373-397.
[21] 杨选辉, 蔡志强. 基于突变检测与共词分析的关联数据新兴趋势探测[J]. 情报科学, 2018, 36(11):166-170.
[22] Chen C M. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science & Technology, 2006, 57(3):359-377.
[23] 罗明英, 李东丽, 岳丕昌, 等. 基于突变词检测的世界核桃研究前沿热点分析[J]. 农业图书情报学刊, 2016, 28(2):60-63.
[24] 奉国和, 李媚婵. 基于Citespace的档案学研究可视化分析[J]. 档案学研究, 2014, 3(5):18-23.
[25] 陆泉, 赵琴. 文档内可视化分析工具的比较研究[J]. 信息资源管理学报, 2016, 6(2):63-71.
[26] 成小娟. 我国电子书包的研究热点与发展趋势——基于关键词频和共词网络图的分析[J]. 中国教育信息化, 2015, 8(11):22-26.
Outlines

/