Based on the grey system theory, this paper studies unbalanced distribution of regional scientific and technological talents in China and calculates the main factors affecting the unbalanced distribution. On this basis, a grey system prediction model of scientific and technological talents is established to simulate and predict the numbers of regional scientific and technological talents in China. The result shows that the regional difference Matthew effect is obvious, that the siphon effect continues to exist, and that the risk of barrel short board increases. Corresponding countermeasures and suggestions are put forward. The result of the study has certain reference value for controlling the risk of extremely unbalanced distribution of scientific and technological talents in China as well as coordinating regional development
[1] 周桂荣, 杜卓. 我国科技型人才区域分布存在的问题及对策[J]. 天津师范大学学报(社会科学版), 2005, 183(6):19-24.
[2] 牛冲槐, 接民, 张敏, 等. 人才聚集效应及其评判[J]. 中国软科学, 2006(4):118-124.
[3] 王崇锋. 山东半岛蓝色经济区科技型人才聚集效应实证研究[J]. 科技管理研究, 2014(12):100-105.
[4] Wei H A, Yi J J, Zhang J S. Brain drain, brain gain, and economic growth in China[J]. China Economic Review 2016(38):322-337.
[5] Zhou Y, Guo Y Z, Liu Y S. High-level talent flow and its influence on regional unbalanced development in China[J]. Applied Geography, 2018(91):89-98.
[6] 郭金龙, 王宏伟. 中国区域间资本流动与区域经济差距研究[J]. 管理世界, 2003(7):45-59.
[7] 徐彬, 吴茜. 人才集聚、创新驱动与经济增长[J]. 软科学, 2019, 33(1):19-23.
[8] 曾波, 孟伟, 刘思峰. 一种强兼容性的灰色通用预测模型及其性质研究[J]. 中国管理科学, 2017, 25(5):150-156.
[9] 纪建悦, 朱彦滨. 基于面板数据的我国科技型人才流动动因研究[J]. 人口与经济, 2008(8):32-37.
[10] 张同全, 高建丽. 胶东半岛科技型人才流动意愿[J]. 中国科技论坛, 2012(7):127-131.
[11] 郭金龙, 王宏伟. 中国区域间资本流动与区域经济差距研究[J]. 管理世界, 2003(7):45-59.
[12] 徐倪妮, 郭俊华. 科技型人才流动的宏观影响因素研究[J]. 科学学研究, 2019, 37(3):414-421.