Talents and Development

Networked analysis on scientific talent migration between provinces in China and its obstructive effectiveness

  • WANG Yinqiu ,
  • LUO Hui ,
  • SHI Yunyan
Expand
  • 1. National Academy of Innovation Strategy, China Association for Science and Technology, Beijing 100864, China;
    2. China Centre for International Science and Technology Exchange, Beijing 100081, China

Received date: 2020-03-31

  Revised date: 2020-06-09

  Online published: 2020-11-10

Abstract

Talents are the foundation of entrepreneurship and the driver of prosperity. The essence of innovation-driven development is talent-driven. Scientific talents are the most critical driving force and decisive factor in the development of economy. There are fierce talent competitions between different regions in China. In this paper we abstract talent migration between different provinces in China as a complex network, and propose an associated networked model. Based on bibliometrics, we get the data about talent migration between different provinces from 2010 to 2017. We combine the data and the propose a networked model to study the evolution of talent migration in China by analyzing the evolution of some indicators of the network. In addition, we also study the talent migration flows in a view of obstacle factors by the way of assuming an obstacle-free framework. We hope that the results can be used to make policies about talents for governments and support to analyze social problems in quantification.

Cite this article

WANG Yinqiu , LUO Hui , SHI Yunyan . Networked analysis on scientific talent migration between provinces in China and its obstructive effectiveness[J]. Science & Technology Review, 2020 , 38(19) : 110 -120 . DOI: 10.3981/j.issn.1000-7857.2020.19.021

References

[1] 习近平. 决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利[R]. 北京:中国共产党第十九届全国代表大会, 2017.
[2] 中华人民共和国国家统计局. 2015年全国1%人口抽样调查主要数据公报[R]. 北京:中华人民共和国国家统计局, 2016.
[3] Geuna A. Global mobility of research scientists[M]. Amsterdam:Elsevier, 2015.
[4] Andrés S. The international mobility of talent[M]. Oxford:Oxford University Press, 2008.
[5] Sari-Pekkala K, William K, Caglar Ö, et al. Global talent flows[J]. Journal of Economic Perspectives, 2016, 30(4):83-106.
[6] Schon B, Ian W. The global "war for talent"[J]. Journal of International Management, 2009, 15(3):273-285.
[7] 郑巧英, 王辉耀, 李正风. 全球科技人才流动形式、发展动态及对中国的启示[J]. 科技进步与对策, 2014(13):150-154.
[8] 杜红亮, 赵志耘. A study on overseas high-level talents polices in science and technology in China[M]. 北京:中国人民大学出版社, 2014.
[9] 王寅秋, 罗晖, 李正风. 基于系统辨识的全球科技领军人才流动网络化模型研究[J]. 系统工程理论与实践, 2019, 39(10):2590-2598.
[10] 田瑞强, 姚长青, 潘云涛, 等. 基于履历数据的海外华人高层次科技人才流动研究:社会网络分析视角[J]. 图书情报工作, 2014(19):96-103.
[11] 田瑞强, 姚长青, 袁军鹏, 等. 基于科研履历的科技人才流动研究进展[J]. 图书与情报, 2013(5):119-125.
[12] Moed H F, Halevi G. A bibliometric approach to tracking international scientific migration[J]. Scientometrics, 2014, 101(3):1987-2001.
[13] Czaika M, Orazbayev S. The globalisation of scientific mobility, 1970-2014[J]. Applied Geography, 2018, 96:1-10.
[14] 许家云, 李淑云. 基于CES生产函数模型的海外人才回流问题研究[J]. 中国科技论坛, 2012(12):102-106.
[15] INSEAD. The global talent competitiveness index:2019[R]. Fontainebleau:Insead, 2019.
[16] Giorgio F, Marina M. International migration network:Topology and modeling[J]. Physical Review E, 2013, 88(1):012812.
[17] Yang S, Yang X, Zhang C, et al. Using social network theory for modeling human mobility[J]. Network IEEE, 2010, 24(5):6-13.
[18] Wang Y Q, Luo H, Shi Y Y. Complex network analysis for international talent mobility based on bibliometrics[J]. International Journal of Innovation Science, 2019, 11(3):419-435.
[19] 科学家在线[EB/OL].[2019-12-20]. http://www.scientistin.com/.
[20] 陈关荣, 汪小帆, 李翔. 复杂网路引论——模型、结构与动力学(英文版)[M]. 北京:高等教育出版社, 2012.
[21] 孙玺菁, 司守奎, 复杂网络算法与应用[M]. 北京:国防工业出版社, 2015.
[22] 何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京:高等教育出版社, 2009.
[23] Head K, Mayer T. What separates us? Sources of resistance to globalization[J]. Canadian Journal of Economics, 2013, 46(4):1196-1231.
Outlines

/