Exclusive: System Engineering

Diamond model and digital-intelligent twin for system of systems engineering

  • CAO Jiang ,
  • CHEN Bin ,
  • GAO Lanlan ,
  • PING Yang ,
  • FAN Zhiqiang
Expand
  • Institute of War, Academy of Military Science, Beijing 100091, China

Received date: 2020-04-17

  Revised date: 2020-05-12

  Online published: 2020-11-17

Abstract

Backgrounds, concepts and definitions of system of systems (SoS) and system of systems engineering (SoSE) are studied from the perspective of complexity in this paper. Connotations of agent, relationship and environment in SoS are analyzed in detail, and the differences between the concepts of system and SoS are compared. A new approach called diamond model to implement the idea and theory of SoSE is proposed and discussed comprehensively along with a new information process based architecture framework, which is more suitable for SoS than the classical Zachman framework based architecture. A novel concept called digital-intelligent twin is presented to proactively explore and foresee the comprehensive essence of SoS in the coming digital and artificial intelligence era. Corresponding meaning and concept framework of digital-intelligent twin and the development trend of future SoS are illustrated briefly.

Cite this article

CAO Jiang , CHEN Bin , GAO Lanlan , PING Yang , FAN Zhiqiang . Diamond model and digital-intelligent twin for system of systems engineering[J]. Science & Technology Review, 2020 , 38(21) : 6 -20 . DOI: 10.3981/j.issn.1000-7857.2020.21.001

References

[1] Boulding K E. General systems theory-The skeleton of science[J]. Management Science, 1956, 2(3):197-208.
[2] Nielsen C B, Larsen P G, Fitzgerald J, et al. Systems of systems engineering:Basic concepts, model-based techniques, and research directions[J]. ACM Computing Surveys, 2015, 48(2):1-41.
[3] 顾基发. 系统工程新发展——体系[J]. 科技导报, 2018, 36(20):10-19.
[4] Keating C, Rogers R, Unal R, et al. System of systems engineering[J]. IEEE Engineering Management Review, 2003, 15(3):36-45.
[5] Jonh H. Emergence:From chaos to order[J]. Quarterly Review of Biology, 2001, 31(1):113-122.
[6] Poza A S, Kovacic S, Keating C, et al. System of systems engineering:An emerging multidiscipline[J]. International Journal of System of Systems Engineering, 2008, 1(1-2):1-17.
[7] Grieves M. Digital twin:Manufacturing excellence through virtual factory replication, White Paper[EB/OL].[2019-12-31]. http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf.
[8] Grieves M, Vickers J. Digital twin:Mitigating unpredictable, undesirable emergent behavior in complex systems, transdisciplinary perspectives on complex systems[M]. Switzerland:Springer International Publishing, 2017.
[9] Kraft E M. The US air force digital thread/digital twinlife cycle integration and the use of computational and experimental knowledge[C]//American Institute of Aeronautics and Astronautics Aerospace Science Meeting. New York:AIAA, 2015, doi:10.2514/6.2016-0897.
[10] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]//Proceedings of the 53rd AIAA Structures, Structural Dynamics and Materials Conference. New York:AIAA, 2012.
[11] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1):1-18.
[12] 许国志, 顾基发, 车宏安. 系统科学[M]. 上海:上海科技教育出版社, 2000.
[13] 钱学森. 论系统工程[M]. 湖南:湖南科学技术出版社, 1988.
[14] 胡晓峰, 张斌. 体系复杂性与体系工程[J]. 中国电子科学研究院学报, 2011, 6(5):446-450.
[15] 曹江, 高岚岚. 互操作、互理解、互遵循——军事信息系统的新型能力目标与评估模型[J]. 指挥与控制学报, 2015, 1(1):41-45.
[16] 刘俊先, 曹江, 张维明, 等. 网络信息体系的成熟度评估[J]. 指挥与控制学报, 2016, 2(4):282-287.
[17] Sowa J F, Zachman J A. Extending and formalizing the framework for information systems architecture[J]. IBM Systems Journal, 1992, 31(3):590-616.
[18] 迈克斯·泰格马克. 生命3.0[M]. 浙江:浙江教育出版社, 2018.
[19] 胡虎, 赵敏, 宁振波, 等, 三体智能革命[M]. 北京:机械工业出版社, 2016.
Outlines

/