With the development trend of intelligent ship and shipping as well as accumulation of ship big data, it is urgent to build a special model of navigation economic analysis through data-driven means to solve the problem of energy consumption evaluation and optimization and maximize ship energy efficiency. In this paper, combined with the relationship between ship's sailing conditions and main engine's fuel consumption characteristics, and considering the factors of draft and relative wind speed, K-means clustering analysis method is used to realize the division of different sailing conditions of the influencing factors of fuel consumption. The historical data of a VLCC are used to verify the actual application. Based on the data of ship's voyage loading and external environment weather conditions, the classification analysis of navigation conditions and the determination of influencing factor parameter interval under each working condition are realized, which provides a more refined analysis basis for the construction of matching model of marine main engine fuel consumption by different working conditions.
TAN Xiao
,
GUAGN Wenyuan
,
LI Han
,
LI Yongjie
,
XUE Chen
. Classification method of ship navigation condition based on clustering analysis[J]. Science & Technology Review, 2020
, 38(21)
: 91
-95
.
DOI: 10.3981/j.issn.1000-7857.2020.21.011
[1] 刘啸波, 任慧龙, 李陈峰. 世界及我国船用低速柴油机行业发展研究[J]. 船舶工程, 2013(1):1-4.
[2] 李思锦. 船舶动力系统的设计与研究[D]. 大连:大连理工大学, 2012.
[3] 周春斌, 袁成清, 张彦. 船舶主机油耗模型发展现状及展望[J]. 柴油机, 2017(6):12-15.
[4] 赵乾博. 考虑油耗及经济性的营运船舶定航线航速优化[D]. 哈尔滨:哈尔滨工程大学, 2017.
[5] 苏一, 张倩墨. 基于能效管理的船舶航速系统优化设计[J]. 上海船舶运输科学研究所学报, 2014, 37(2):43-49.
[6] 李卫军. K-means聚类算法的研究综述[J]. 现代计算机(专业版), 2014(23):31-32.
[7] 刘伊凡, 黄连忠, 孙培廷, 等. 实船数据环境下船舶主柴油机性能评估方法[J]. 内燃机学报, 2018(2):182-183.
[8] 施浩, 黄亦翔, 刘成良. 基于多工况自动聚类的飞机发动机健康状态评估[J]. 机电一体化, 2016, 22(11):39-43.
[9] 吴夙慧, 成颖, 郑彦宁, 等. K-means算法研究综述[J]. 现代图书情报技术, 2011, 27(5):28-35.
[10] 任景彪, 尹绍宏. 一种有效的K-means聚类初始中心选取方法[J]. 计算机与现代化, 2010(7):84-86.
[11] 马静, 高翔, 李益楠, 等. 考虑风速随机特征的多工况电力系统稳定性分析[J]. 电力自动化设备, 2016, 36(8):26-32.
[12] 李美菁, 吴秀恒. 船舶在风浪流及浅水域中多工况操纵运动模拟计算[J]. 中国造船, 1989(3):38-52.