[1] Polk C. Biological applications of large electric fields:Some history and fundamentals[J]. IEEE Transactions on Plasma Science, 2000, 28(1):6-14.
[2] Malmivuo J, Plonsey R. Bioelectromagnetism[M]. Oxford:Oxford University Press, 1995:2-3.
[3] Geddes L A. Historical highlights in cardiac pacing[J]. IEEE Engineering in Medicine and Biology Magazine, 1990, 9(2):12-18.
[4] Timms D. A review of clinical ventricular assist devices[J]. Medical Engineering and Physics, 2011, 33(9):1041-1047.
[5] Jaffe L F, Nuccitelli R. Electrical controls of development[J]. Annual Review of Biophysics and Bioengineering, 1977(6):445-476.
[6] Bai G, Li Y, Chu H K, et al. Characterization of biomechanical properties of cells through dielectrophoresisbased cell stretching and actin cytoskeleton modeling[J]. BioMedical Engineering OnLine, 2017, 16(1):41.
[7] Titushkin I, Cho M. Regulation of cell cytoskeleton and membrane mechanics by electric field:Role of linker proteins[J]. Biophysical Journal, 2009, 96(2):717-728.
[8] Titushkin I A, Cho M R. Controlling cellular biomechanics of human mesenchymal stem cells[C]. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society:Engineering the Future of Biomedicine, Piscataway, NJ:IEEE, 2009:2090-2093.
[9] Titushkin I, Cho M. Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics[J]. Journal of Biomechanics, 2011, 44(15):2692-2698.
[10] McBeath M, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Developmental Cell, 2004, 6(4):483-495.
[11] Wong P K, Tan W, Ho C M. Cell relaxation after electrodeformation:Effect of latrunculin A on cytoskeletal actin[J]. Journal of Biomechanics, 2005, 38(3):529-535.
[12] Pelling A E, Horton M A. An historical perspective on cell mechanics[J]. Pflugers Archiv-European Journal of Physiology, 2008, 456(1):3-12.
[13] Janmey P A, McCulloch C A. Cell Mechanics:Integrating cell responses to mechanical stimuli[J]. Annual Review of Biomedical Engineering, 2007(9):1-34.
[14] Meyers V E, Zayzafoon M, Douglas J T, et al. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity[J]. Journal of Bone and Miner research, 2005, 20(10):1858-1866.
[15] Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4):677-689.
[16] Ruan J L, Tulloch N L, Razumova M V, et al. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue[J]. Circulation, 2016, 134(20):1557-1567.
[17] Smith P G, Deng L, Fredberg J J, et al. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization[J]. Lung Cellular and Molecular Physiology, 2003, 285(2):456-463.
[18] Cho Y, Son M, Jeong M, et al. Electric field-induced migration and intercellular stress alignment in a collective epithelial monolayer[J]. Molecular Biology of the Cell, 2018(29):2243-2357.
[19] Curtze S, Dembo M, Miron M, et al. Dynamic changes in traction forces with DC electric field in osteoblast-like cells[J]. Journal of Cell Science, 2004(117):2721-2729.
[20] Steckel R R, Page E H, Geddes L A, et al. Electrical stimulation on skin wound healing in the horse:Preliminary studies[J]. Amreican Journal of Veterinary Research, 1984, 45(4):800-803.
[21] Thrivikraman G, Boda S K, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function:A tissue engineering perspective[J]. Biomaterials, 2018(150):60-86.
[22] Mobini S, Leppik L, Barker J H. Direct current electrical stimulation chamber for treating cells in vitro[J]. Biotechniques, 2016, 60(2):95-98.
[23] Yizraeli M L, Weihs D. Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment[J]. Cell Biochemistry and Biophysics, 2011, 61(3):605-618.
[24] Jaatinen L, Young E, Hyttinen J. Quantifying the effect of electric current on cell adhesion studied by singlecell force spectroscopy[J]. Biointerphases, 2016, 11(4):1-8.
[25] Tambe D T, Hardin C C, Angelini T E, et al. Collective cell guidance by cooperative intercellular forces[J]. Nature Materials, 2011(10):469-475.
[26] Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus[J]. Bioelectrochemistry, 2006, 69(2):133-141.
[27] Sun S, Liu Y, Lipsky S, et al. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells[J]. The FASEB Journal, 2007, 21(7):1472-1480.
[28] Kim J H, Serra-Picamal X, Tambe D T, et al. Propulsion and navigation within the advancing monolayer sheet[J]. Nature Materials, 2013(12):856-863.
[29] Salipante P F, Shapiro M L, Vlahovska PM. Electric field induced deformations of biomimetic fluid membranes[J]. Procedia Iutam, 2015(16):60-69.
[30] Portet T, Mauroy C, Demery V, et al. Destabilizing giant vesicles with electric fields:An overview of current applications[J]. The Journal of Membrane Biology, 2012, 245(9):555-564.
[31] Kummrow M, Helfrich W. Deformation of giant lipid vesicles by electric fields[J]. Physical Review A, 1991, 44(12):8356-8361.
[32] Li Z, Anvari B, Takashima M, et al. Membrane tether formation from outer hair cells with optical tweezers[J]. Biophysical Journal, 2002, 82(3):1386-1395.
[33] Qian F, Ermilov S, Murdock D, et al. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics[J]. Review of Scientific Instruments, 2004, 75(9):2937-2942.
[34] Brownell W E, Qian F, Anvari B. Cell membrane tethers generate mechanical force in response to electrical stimulation[J]. Biophysical Journal, 2010, 99(3):845-852.
[35] Qian F, William E B, Bahman A. Effect of ionic strength on electrically evoked membrane tether force:An optical tweezers study[J]. Proceedings of SPIE, 2004(5514):626-631.
[36] Beebe S, Sain N, Ren W. Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs)[J]. Cells, 2013, 2(1):136-162.
[37] 郑超. 低温等离子体和脉冲电场灭菌技术[D]. 杭州:浙江大学, 2013.
[38] 黄康. 高压脉冲电场处理室内多物理场对微生物灭活作用的研究[D]. 杭州:浙江大学, 2013.
[39] Pillet F, Formosa-Dague C, Baaziz H, et al. Cell wall as a target for bacteria inactivation by pulsed electric fields[J]. Science Reports, 2016, 6(1):19778-19778.
[40] Schoenbach K H, Beebe S J, Buescher E S. Intracellular effect of ultrashort electrical pulses[J]. Bioelectromagnetics, 2001, 22(6):440-448.
[41] Kolb J F, Kono S, Schoenbach K H. Nanosecond pulsed electric field generators for the study of subcellular effects[J]. Bioelectromagnetics, 2006, 27(3):172-187.
[42] Berghöfer T, Eing C, Flickinger B, et al. Nanosecond electric pulses trigger actin responses in plant cells[J]. Biochemical and Biophysical Research Communications, 2009, 387(3):590-595.
[43] Dutta D, Asmar A, Stacey M. Effects of nanosecond pulse electric fields on cellular elasticity[J]. Micron, 2015(72):15-20.
[44] Hohenberger P, Eing C, Straessner R, et al. Plant actin controls membrane permeability[J]. Biochimica Biophysica Acta(BBA) -Biomembranes, 2011, 1808(9):2304-2312.
[45] Xiao D, Tang L, Zeng C, et al. Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells[J]. Cell Biology International, 2011, 35(2):99-104.
[46] Thompson G L, Roth C, Tolstykh G, et al. Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields[J]. Bioelectromagnetics, 2014, 35(4):262-272.
[47] Stacey M, Fox P, Buescher S, et al. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival[J]. Bioelectrochemistry, 2011, 82(2):131-134.
[48] Louise C, Etienne D, Marie-Pierre R. AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization[J]. Cytoskeleton, 2014, 71(10):587-594.
[49] Chopinet L, Roduit C, Rols M P, et al. Destabilization induced by electropermeabilization analyzed by atomic force microscopy[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(9):2223-2229.
[50] Chopinet L, Rols M P. Nanosecond electric pulses:A mini-review of the present state of the art[J]. Bioelectrochemistry, 2015(103):2-6.
[51] Nuccitelli R, Pliquett U, Chen X, et al. Nanosecond pulsed electric fields cause melanomas to self-destruct[J]. Biochemical and Biophysical Research Communication, 2006, 343(2):351-360.
[52] Nuccitelli R, Chen X, Pakhomov A G, et al. A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence[J]. International Journal of Cancer, 2009, 125(2):438-445.
[53] 张仁民, 姚陈果, 陈新, 等. ns级陡脉冲诱导肿瘤细胞凋亡的实验研究[J]. 高电压技术, 2007(2):106-108.
[54] 姚青, 宋治远, 马显光. 脉冲微交流电刺激促进体外诱导大鼠骨髓间充质干细胞向心肌分化[J]. 第三军医大学学报, 2008(5):410-413.
[55] Timoshkin I V, MacGregor S J, Fouracre R A, et al. Forces acting on biological cells in external electrical fields[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena. Piscataway, NJ:IEEE, 2006.
[56] Teissie J, Golzio M, Rols M P. Mechanisms of cell membrane electropermeabilization:A minireview of our present (lack of?) knowledge[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2005, 1724(3):270-280.
[57] Neumann E, Kakorin S, Tœnsing K. Fundamentals of electroporative delivery of drugs and genes[J]. Bioelectrochemistry Bioenerg, 1999, 48(1):3-16.
[58] Sack M, Sigler J, Frenzel S, et al. Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue[J]. Food Engineering Reviews, 2010, 2(2):147-156.
[59] Knorr D, Angersbach A, Eshtiaghi M N, et al. Processing concepts based on high intensity electric field pulses[J]. Trends in Food Science and Technology, 2001, 12(3/4):129-135.
[60] Gusbeth C, Frey W, Volkmann H, et al. Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater[J]. Chemosphere, 2009, 75(2):228-233.
[61] Toepfl S, Heinz V, Knorr D. High intensity pulsed electric fields applied for food preservation[J]. Chemical Engineering and Processing:Process Intensification, 2007, 46(6):537-546.
[62] Sun X, Nunes S S. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes[J]. Methods, 2016, 101(15):21-26.
[63] Poo M M, Poo W J H, Lam J W. Lateral electrophoresis and diffusion of concanavalin:A receptors in the membrane of embryonic muscle cell[J]. Journal of Cell Biology, 1978, doi:10.1083/jcb.76.2.483.on cell migration and actin filament distribution in bovine vascular endothelial cells[J]. Journal of Vascular Research, 2002(39):391-404.
[65] Li Y, Xu T, Chen X, et al. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMAbased microfluidic device[J]. Analytical and Bioanalytical Chemistry, 2017, 409(8):2163-2178.
[66] Kotnik T, Pucihar G, Reberšek M, et al. Role of pulse shape in cell membrane electropermeabilization[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2003, 1614(2):193-200.
[67] Miklavcic D, Towhidi L. Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells[J]. Radiology & Oncology, 2010, 44(1):34-41.
[64] Li X, Kolega J. Effects of direct current electric fields