[1] Lewis N S. Toward cost-effective solar energy use[J]. Science, 2007, 315(5813):798-801.
[2] Fenwick A Q, Gregoire J M, Luca O R. Electrocatalytic reduction of nitrogen and carbon dioxide to chemical fuels:Challenges and opportunities for a solar fuel device[J]. Journal of Photochemistry and Photobiology B:Biology, 2015, 152:47-57.
[3] Brennaman M K, Dillon R J, Alibabaei L, et al. Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells[J]. Journal of the American Chemical Society, 2016, 138(40):13085-13102.
[4] 李灿. 太阳能转化科学与技术[M]. 北京:科学出版社, 2020.
[5] 王希成. 生物化学[M]. 北京:清华大学出版社, 2015.
[6] Blankenship R E, Tiede D M, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332:805-809.
[7] Jules V. The mysterious island[M]. Paris:Pierre-Jules Hetzel Publisher, 1874.
[8] Giacomo C. The photochemistry of the future[J]. Science, 1912, 36(926):385-394.
[9] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[10] 温福宇, 杨金辉, 宗旭, 等. 太阳能光催化制氢研究进展[J]. 化学进展, 2009, 21(11):2285-2302.
[11] Inoue T, Fujishima A, Konishi S, et al. Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277(5698):637-638.
[12] Halmann M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells[J]. Nature, 1978, 275(5676):115-116.
[13] Halmann M, Katzir V, Borgarello E, et al. Photoassisted carbon-dioxide reduction on aqueous suspensions of titanium-dioxide[J]. Solar Energy Material, 1984, 10(1):85-91.
[14] Subrahmanyam M, Kaneco S, Alonso-Vante N, et al. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C-1-C-3 selectivity[J]. Applied Catalysis B:Environment, 1999, 23(2/3):169-174.
[15] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of the American Chemistry Society, 2003, 125(10):3082-3089.
[16] Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1-xZnx) (N1-xOx) solid solution for overall water splitting under visible light[J]. Journal of Catalysis, 2008, 254(2):198-204.
[17] Maeda K, Higashi M, Lu D L, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of the American Chemistry Society, 2010, 132(16):5858-5868.
[18] Chen S S, Qi Y, Hisatomi T, et al. Efficient visiblelight-driven Z-scheme overall water splitting using a MgTa2O6-xNy/TaON heterostructure photocatalyst for H2 evolution[J]. Angewandte Chemie-International Edition, 2015, 54(29):8498-8501.
[19] Yan H, Yang J, Ma G, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis, 2009, 266(2):165-168.
[20] Wang, Q, Hisatomi T, Jia Q X, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature materials, 2016, 15(6):611-615.
[21] Zhao Y, Ding C, Zhu J, et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts[J]. Angewandte Chemie International Edition, 2020, 59(24):9653-9658.
[22] Pinaud B A, Benck J D, Seitz L C, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry[J]. Energy & Environmental Science, 2013, 6(7):1983-2001.
[23] Ding C M, Shi J Y, Wang Z L, et al. Photoelectrocatalytic water splitting:Significance of cocatalysts, electrolyte, and interfaces[J]. ACS catalysis, 2017, 7(1):675-688.
[24] Zhang D D, Shi J Y, Zi W, et al. Recent advances in photoelectrochemical applications of silicon materials for solar-to-chemicals conversion[J]. ChemSusChem, 2017, 10(22):4324-4341.
[25] Li D, Shi J Y, Li C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting:a mini review[J]. Small, 2018, 14(23):1704179.
[26] Kim J H, Lee J S. Elaborately modified BiVO4 photoanodes for solar water splitting[J]. Advanced Materials, 2019, 31(20), 1806938.
[27] Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting[J]. Angewandte Chemie-International Edition, 2014, 53(28):7295-7299.
[28] Liu G J, Ye S, Yan P L, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016,9(4), 1327-1334.
[29] Liu G J, Fu P, Zhou L Y, et al. Efficient hole extraction from hole-storage-layer-stabilized tantalum nitride photoanode for solar water splitting[J]. Chemistry, 2015, 21(27):9624-9628.
[30] Montoya J H, Seitz L C, Chakthranont P, et al. Materials for solar fuels and chemicals[J]. Nature Materials, 2017, 16(1):70-81.
[31] Liao S C, Zong X, Seger B, et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging[J]. Nature Communications, 2016, 7:11474.
[32] Liu M Y, Du M Y, Long G F, et al. Iron/Quinone-based all-in-one solar rechargeable flow cell for highly efficient solar energy conversion and storage[J]. Nano Energy, 2020, 76:104907.
[33] Zhang B Q, Fan W J, Yao T T, et al. Design and fabrication of a dual-photoelectrode fuel cell towards cost-effective electricity production from biomass[J]. ChemSusChem, 2017, 10(1):99-105.
[34] Zhang B Q, He L H, Yao T T, et al. Simultaneous photoelectrocatalytic water oxidation and oxygen reduction for solar electricity production in alkaline solution[J]. ChemSusChem 2019, 12(5):1026-1032.
[35] Wang W Y, Chen J, Li C, et al. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts[J]. Nature Communications, 2014, 5(8):4647.