[1] Gust D, Moore T A, Moore A L. Solar fuels via artificial photosynthesis[J]. Accounts of Chemical Research, 2009, 42(12):1890-1898.
[2] Lewis N S, Nocera D G. Powering the planet:Chemical challenges in solar energy utilization[J]. PNAS, 2006, 103(43):15729-15735.
[3] Blankenship R E, Tiede D M, Barber J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031):805-809.
[4] Hurst J K. In pursuit of water oxidation catalysts for solar fuel production[J]. Science, 2010, 328(5976):315-316.
[5] Cox N, Pantazis D A, Neese F, et al. Biological water oxidation[J]. Accounts of Chemical Research. 2013, 46(7):1588-1596.
[6] Cox N, Retegan M, Neese F, et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation[J]. Science, 2014, 345(6198):804-808.
[7] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å[J]. Nature, 2011, 473(7345):55-60.
[8] Suga M, Akita F, Hirata K, et al. Native structure of photosystem II at 1.95Å resolution viewed by femtosecond X-ray pulses[J]. Nature, 2015, 517(7532):99-103.
[9] Suga M, Akita F, Sugahara M, et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL[J]. Nature, 2017, 543(7643):131-135.
[10] Kim S, Lindner S N, Aslan S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16:538-545.
[11] Zhao T T, Feng G H, Chen W, et al. Artificial bioconversion of carbon dioxide[J]. Chinese Journal of Catalysis, 2019, 40(10):1421-1437.
[12] Janzen A F, Seibert M. Photoelectrochemical conversion using reaction-centre electrodes[J]. Nature, 1980, 286(5773):584-585.
[13] Yehezkeli O, Tel-Vered R, Michaeli D, et al. Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells[J]. Photosynthesis Research, 2014, 120(1/2):71-85.
[14] Kato M, Zhang J Z, Paul N, et al. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II[J]. Chemical Society Reviews, 2014, 43:6485-6497.
[15] Pinhassi R I, Kallmann D, Saper G, et al. Hybrid biophoto-electro-chemical cells for solar water splitting[J]. Nature Communications, 2016, 7:12552.
[16] Yehezkeli O, Tel-Vered R, Michaeli D, et al. Photosystem I (PSI)/Photosystem II (PSII) -based photo-bioelectrochemical cells revealing directional generation of photocurrents[J]. Small, 2013, 9(17):2970-2978.
[17] Wang F, Liu X, Willner I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications[J]. Advanced Materials, 2013, 25(3):349-377.
[18] Zhang C, Chen C, Dong H, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis[J]. Science, 2015, 348(6235):690-693.
[19] Dismukes G C, Brimblecombe R, Felton G A, et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts:Lessons from photosynthesis[J]. Accounts of Chemical Research, 2009, 42(12):1935-1943.
[20] Cestellos-Blanco S, Zhang H, Kim J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3):245-255.
[21] Kornienko N, Zhang J Z, Sakimoto K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10):890-899.
[22] Noji T, Suzuki H, Gotoh T, et al. Photosystem II-gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems[J]. Journal of Physical Chemistry Letters, 2011, 2(19):2448-2452.
[23] Ulas G, Brudvig G W. Redirecting electron transfer in photosystem II from water to redox-active metal complexes[J]. Journal of the American Chemical Society, 2011, 133(34):13260-13263.
[24] Cai P, Feng X Y, Fei J B, et al. Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent[J]. Nanoscale, 2015, 7(25):10908-10911.
[25] Wang W Y, Chen J, Li C, et al. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts[J]. Nature Communications, 2014, 5:4647.
[26] Wang W, Wang Z, Zhu Q, et al. Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell[J]. Chemical Communications, 2015, 51(95):16952-16955.
[27] Wang W Y, Wang H Z, Zhu Q J, et al. Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting:A natural-artificial photosynthetic hybrid[J]. Angewandte Chemie International Edition, 2016, 55(32):9229-9233.
[28] Li Z, Wang W Y, Ding C M, et al. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting[J]. Energy & Environmental Science, 2017, 10(3):765-771.
[29] Wang W, Li Z, Chen J, et al. Crucial roles of electron-proton transport relay in the photosystem II-photocatalytic hybrid system for overall water splitting[J]. The Journal of Physical Chemistry C, 2017, 121(5):2605-2612.
[30] Li Z, Qi Y, Wang W, et al. Blocking backward reaction on hydrogen evolution cocatalyst in a photosystem II hybrid Z-scheme water splitting system[J]. Chinese Journal of Catalysis, 2019, 40(4):486-494.
[31] Li Z, Wang W Y, Liao S, et al. Integrating a redox flow battery into a Z-scheme water splitting system for enhancing the solar energy conversion efficiency[J]. Energy & Environmental Science, 2019, 12(2):631-639.
[32] Iwuchukwu I J, Vaughn M, Myers N, et al. Self-organized photosynthetic nanoparticle for cell-free hydrogen production[J]. Nature Nanotechnology, 2010, 5(1):73-79.
[33] Utschig L M, Silver S C, Mulfort K L, et al. Nature-driven photochemistry for catalytic solar hydrogen production:A photosystem I-transition metal catalyst hybrid[J]. Journal of the American Chemical Society, 2011, 133(41):16334-16337.
[34] Lubner C E, Grimme R, Bryant D A, et al. Wiring photosystem I for direct solar hydrogen production[J]. Biochemistry, 2010, 49(3):404-414.
[35] Kalyanasundaram K, Graetzel M. Artificial photosynthesis:biomimetic approaches to solar energy conversion and storage[J]. Current Opinion in Biotechnology, 2010, 21(3):298-310.
[36] Efrati A, Tel-Vered R, Michaeli D, et al. Cytochrome ccoupled photosystem I and photosystem II (PSI/PSII) photo-bioelectrochemical cells[J]. Energy & Environmental Science, 2013, 6(10):2950-2956.
[37] Kothe T, Plumeré N, Badura A, et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications[J]. Angewandte Chemie International Edition, 2013, 52(52):14233-14236.
[38] Kato M, Cardona T, Rutherford A W, et al. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode[J]. Journal of the American Chemical Society, 2012, 134(20):8332-8335.
[39] Mersch D, Lee C Y, Zhang J Z, et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2015, 137(26):8541-8549.
[40] Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:Nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284):448-450.
[41] Zhang S, Shi J, Sun Y, et al. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide[J]. ACS Catalysis, 2019, 9(5):3913-3925.
[42] Yadav R K, Oh G H, Park N-J, et al. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system[J]. Journal of the American Chemical Society, 2014, 136(48):16728-16731.
[43] Kuk S K, Singh R K, Nam D H, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade[J]. Angewandte Chemie International Edition, 2017, 56(14):3827-3832.
[44] Kuk S K, Jang J, Kim J, et al. CO2-reductive, copper oxide-based photobiocathode for Z-schematic semi-artificial leaf structure[J]. ChemSusChem, 2020, 13(11):2940-2944.
[45] Wu Y, Ward-Bond J, Li D, et al. g-C3N4@α-Fe2O3/C photocatalysts:Synergistically intensified charge generation and charge transfer for NADH regeneration[J]. ACS Catalysis, 2018, 8(7):5664-5674.
[46] Miller T E, Beneyton T, Schwander T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491):649-654.
[47] Liao J C, Mi L, Pontrelli S, et al. Fuelling the future:Microbial engineering for the production of sustainable biofuels[J]. Nature Reviews Microbiology, 2016, 14(5):288-304.
[48] Torella J P, Gagliardi C J, Chen J S, et al. Efficient solar-to-fuels production from a hybrid microbial-watersplitting catalyst system[J]. PNAS, 2015, 112(8):2337-2342.
[49] Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290):1210-1213.
[50] Liu C, Gallagher J J, Sakimoto K K, et al. Nanowirebacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5):3634-3639.
[51] Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268):74-77.
[52] Zhang H, Liu H, Tian Z, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10):900-905.
[53] Su Y, Cestellos-Blanco S, Kim J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2fixation[J]. Joule, 2020, 4(4):800-811.
[54] Kornienko N, Zhang J Z, Sakimoto K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10):890-899.