Exclusive:Solar fules

Research progress of non-copper-based catalysts for selective hydrogenation of carbon dioxide to methanol

  • SHA Feng ,
  • HAN Zhe ,
  • TANG Chizhou ,
  • TANG Shan ,
  • WANG Jijie ,
  • LI Can
Expand
  • 1. School of Materials Science and Engineering, Nankai University, Tianjin 300350 China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian 116023 China

Received date: 2020-10-15

  Revised date: 2020-10-20

  Online published: 2021-01-14

Abstract

Carbon dioxide is one of the most important greenhouse gases that cause global climate change. Reducing carbon dioxide emissions and converting it to chemicals and fuels with high-value are of great significance for sustainable development. Carbon dioxide hydrogenation to methanol utilizing green hydrogen produced from renewable resources such as solar energy is one of the important ways to solve the greenhouse effect and develop green energy. In recent years, non-copper-based catalysts represented by solid solutions have developed rapidly, showing good industrial application prospects. This paper reviews the research progress of non-copper-based catalysts for selective hydrogenation of carbon dioxide to methanol, with focuses on supported metal catalysts, bimetallic catalysts, solid solution catalysts, and indium oxide-based catalysts, so as to provide references for the design of efficient and stable methanol synthesis catalysts.

Cite this article

SHA Feng , HAN Zhe , TANG Chizhou , TANG Shan , WANG Jijie , LI Can . Research progress of non-copper-based catalysts for selective hydrogenation of carbon dioxide to methanol[J]. Science & Technology Review, 2020 , 38(23) : 113 -127 . DOI: 10.3981/j.issn.1000-7857.2020.23.012

References

[1] Trends in atmospheric carbon dioxide[EB/OL].[2020-10-15]. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.
[2] Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon:From CO2 to chemicals, materials, and fuels. Technological use of CO2[J]. Chemical Reviews, 2014, 114(3):1709-1742.
[3] 张丽君. 二氧化碳捕集与地下埋存国际进展[J]. 国土资源情报, 2007, 11:16-21.
[4] 马铭婧, 郗凤明, 凌江华, 等. 二氧化碳矿物封存技术研究进展[J]. 生态学杂志, 2019, 38(12):3854-3863.
[5] Li Z, Qu Y, Wang J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2):570-583.
[6] Li Z, Wang J, Qu Y, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12):8544-8548.
[7] Gao P, Li S, Bu X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10):1019-1024.
[8] Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120:7984-8034.
[9] Bansode A, Urakawa A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. Journal of Catalysis, 2014, 309:66-70.
[10] Fujitani T, Saito M, Kanai Y, et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen[J]. Applied Catalysis A:General, 1995, 125(2):L199-L202.
[11] Collins S, Briand L, Gambaro L, et al. Adsorption and decomposition of methanol on gallium oxide polymorphs[J]. The Journal of Physical Chemistry C, 2008, 112(38):14988-15000.
[12] Chiavassa D, Collins S, Bonivardi A, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Kinetic modeling[J]. Chemical Engineering Journal, 2009, 150(1):204-212.
[13] Collins S, Baltanás M, Bonivardi A. An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3[J]. Journal of Catalysis, 2004, 226(2):410-421.
[14] Chiavassa D, Barrandeguy J, Bonivardi A, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Impact of reaction products[J]. Catalysis Today, 2008, 133/134/135:780-786.
[15] Iwasa N, Suzuki H, Terashita M. Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts[J]. Catalysis Letters, 2004, 96(1):75-78.
[16] Díez-Ramírez J, Valverde J, Sánchez P, et al. CO2 hydrogenation to methanol at atmospheric pressure:Influence of the preparation method of Pd/ZnO catalysts[J]. Catalysis Letters, 2016, 146(2):373-382.
[17] Bahruji H, Bowker M, Jones W, et al. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI)[J]. Faraday Discussions, 2017, 197:309-324.
[18] Ojelade O, Zaman S, Daous M, et al. Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol[J]. Applied Catalysis A:General, 2019, 584:117185.
[19] Malik A, Zaman S, Al-Zahrani A, et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Applied Catalysis A:General, 2018, 560:42-53.
[20] Frei M, Mondelli C, García-Muelas R. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation[J]. Nature Communications, 2019, 10(1):3377.
[21] Rui N, Wang Z, Sun K, et al. CO2 hydrogenation to methanol over Pd/In2O3:Effects of Pd and oxygen vacancy[J]. Applied Catalysis B:Environmental, 2017, 218:488-497.
[22] Jiang H, Lin J, Wu X. Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts[J]. Journal of CO2 Utilization, 2020, 36:33-39.
[23] Liang X, Dong X, Lin G, et al. Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO2 to methanol[J]. Applied Catalysis B:Environmental, 2009, 88(3):315-322.
[24] Kong H, Li H, Lin G, et al. Pd-Decorated CNT-Promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol[J]. Catalysis Letters, 2011, 141(6):886.
[25] Wang J, Lu S, Li J, et al. A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes[J]. Chemical Communications, 2015, 51(99):17615-17618.
[26] Erdöhelyi A, Pásztor M, Solymosi F. Catalytic hydrogenation of CO2 over supported palladium[J]. Journal of Catalysis, 1986, 98(1):166-177.
[27] Gotti A, Prins R. Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts[J]. Journal of Catalysis, 1998, 175(2):302-311.
[28] Koizumi N, Jiang X, Kugai J, et al. Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis[J]. Catalysis Today, 2012, 194(1):16-24.
[29] Shao C, Fan L, Fujimoto K, et al. Selective methanol synthesis from CO2/H2 on new SiO2-supported PtW and PtCr bimetallic catalysts[J]. Applied Catalysis A:General, 1995, 128(1):L1-L6.
[30] Han Z, Tang C Z, Wang J J, et al. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2020, doi:10.1016/j.jcat.2020.06.018.
[31] Men Y L, Liu Y, Wang Q Q, et al. Highly dispersed Ptbased catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure[J]. Chemical Engineering Science, 2019, 200:167-175.
[32] Sun K H, Rui N, Zhang Z T, et al. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chemistry, 2020, 22(15):5059-5066.
[33] Wu C Y, Zhang P, Zhang Z F, et al. Efficient hydrogenation of CO2 to methanol over supported subnanometer gold catalysts at low temperature[J]. ChemCatChem, 2017, 9(19):3691-3696.
[34] Sakurai H, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides[J]. Catalysis Today, 1996, 29(1):361-365.
[35] Hartadi Y, Widmann D, Behm R J. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions:Support and particle size effects[J]. ChemSusChem, 2015, 8(3):456-465.
[36] Vourros A, Garagounis I, Kyriakou V. Carbon dioxide hydrogenation over supported Au nanoparticles:Effect of the support[J]. Journal of CO2 Utilization, 2017, 19:247-256.
[37] Yang X F, Kattel S, Senanayake S D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x/TiO2 Interface[J]. Journal of the American Chemical Society, 2015, 137(32):10104-10107.
[38] Grabowski R, Słoczyński J, Śliwa M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2011, 1(4):266-278.
[39] Furukawa S, Komatsu T. Intermetallic compounds:Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis[J]. ACS Catalysis, 2017, 7(1):735-765.
[40] Choi H, Oh S, Trung-Tran S, et al. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2019, 376:68-76.
[41] Manrique R, Jiménez R, Rodríguez-Pereira J, et al. Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd[J]. International Journal of Hydrogen Energy, 2019, 44(31):16526-16536.
[42] Manrique R, Rodríguez-Pereira J, Rincón-Ortiz S, et al. The nature of the active sites of Pd-Ga catalysts in the hydrogenation of CO2 to methanol[J]. Catalysis Science & Technology, 2020, 10(19):6644-6658.
[43] Ota A, Kunkes E, Kasatkin I, et al. Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts[J]. Journal of Catalysis, 2012, 293:27-38.
[44] Collins S, Delgado J, Mira C, et al. The role of Pd-Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst[J]. Journal of Catalysis, 2012, 292:90-98.
[45] Oyola-Rivera O, Baltanás M, Cardona-Martínez N. CO2 hydrogenation to methanol and dimethyl ether by PdPd2Ga catalysts supported over Ga2O3 polymorphs[J]. Journal of CO2 Utilization, 2015, 9:8-15.
[46] Snider J, Streibel V, Hubert M, et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(4):3399-3412.
[47] Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nature Chemistry, 2014, 6(4):320-324.
[48] Sharafutdinov I, Elkjær C F, de Carvalho H W P, et al. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol[J]. Journal of Catalysis, 2014, 320:77-88.
[49] Gallo A, Snider J, Sokaras D, et al. Ni5Ga3 catalysts for CO2 reduction to methanol:Exploring the role of Ga surface oxidation/reduction on catalytic activity[J]. Applied Catalysis B:Environmental, 2020, 267:118369.
[50] Tang Q L, Shen Z M, Huang L, et al. Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface[J]. Physical Chemistry Chemical Physics, 2017, 19(28):18539-18555.
[51] Tang Q L, Ji W C, Russell C K, et al. Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters[J]. Applied Energy, 2019, 253(1):113623.
[52] Wang J, Li G, Li Z, et al. A highly selective and stable ZnO-ZrO 2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10):e1701290.
[53] Wang J, Tang C, Li G, et al. High-performance MaZrOx (Ma=Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11):10253-10259.
[54] Li W, Wang K, Huang J, et al. MxOy-ZrO2(M=Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36):33263-33272.
[55] Wang X, Wang Y, Yang C, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2[J]. Applied Catalysis A:General, 2020, 595:117507.
[56] Temvuttirojn C, Poo-arporn Y, Chanlek N, et al. Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):5525-5535.
[57] Ye J Y, Liu C J, Mei D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110):A DFT study[J]. ACS Catalysis, 2013, 3(6):1296-1306.
[58] Sun K, Fan Z, Ye J, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12:1-6.
[59] Tsoukalou A, Abdala P, Stoian D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol:An operando XAS-XRD and in-situ TEM study[J]. Journal of the American Chemical Society, 2019, 141(34):13497-13505.
[60] Dang S S, Qin B, Yang Y, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25):eaaz2060.
[61] Martin O, Martín A, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21):6261-6265.
[62] Frei M, Mondelli C, Cesarini A, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(2):1133-1145.
[63] Chen T, Cao C, Chen T, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9):8785-8797.
[64] Chou C Y, Lobo R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Applied Catalysis A:General, 2019, 583:117144.
Outlines

/