[1] Zhang J, Feng Z C, Li C, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie International Edition, 2008, 47(9):1766-1769.
[2] Wang X, Feng Z C, Li C, et al. Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3[J]. Angewandte Chemie International Edition, 2012, 51(52):13089-13092.
[3] Li R G, Zhang F X, Li C, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communication, 2013, 4:1432.
[4] Yoshihara T, Katoh R, Furube A, et al. Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400-2500 nm) transient absorption spectroscopy[J]. Journal of Physical Chemistry B, 2004, 108(12):3817-3823.
[5] Shi J Y, Chen J, Feng Z C, et al. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture[J]. Journal of Physical Chemistry C, 2007, 111(2):693-699.
[6] Wang X L, Feng Z C, Shi J Y, et al. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition[J]. Physical Chemistry Chemical Physics, 2010, 12(26):7083-7090.
[7] Wang X L, Kafizas A, Li X, et al. Transient absorption spectroscopy of anatase and rutile:The impact of morphology and phase on photocatalytic activity[J]. Journal of Physical Chemistry C, 2015, 119(19):10439-10447.
[8] Yamakata A, Ishibashi, T A, Onishi H. Water- and oxygen-induced decay kinetics of photogenerated electrons in TiO2 and Pt/TiO2:A time-resolved infrared absorption study[J]. Journal of Physical Chemistry B, 2001, 105(30):7258-7262.
[9] Chen T, Feng Z C, Wu G P, et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier Transform IR and timeresolved IR spectroscopy[J]. Journal of Physical Chemistry C, 2007, 111(22):8005-8014.
[10] Tang J W, Durrant J R, Klug D R. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry[J]. Journal of the American Chemical Society, 2008, 130(42):13885-13891.
[11] Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels[J]. Chemical Society Reviews, 2013, 42(6):2281-2293.
[12] Pendlebury S R, Wang X L, Le Formal F, et al. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias[J]. Journal of the American Chemical Society, 2014, 136(28):9854-9857.
[13] Furube A, Asahi T, Masuhara H, et al. Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy[J]. Chemical Physics Letters, 2001, 336:424-430.
[14] Wu K, Zhu H, Liu Z, et al. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures[J]. Journal of the American Chemical Society, 2012, 134(25):10337-10340.
[15] Barroso M, Mesa C A, Pendlebury S R, et al. Dynamics of photogenerated holes in surface modified ∂-Fe2O3 photoanodes for solar water splitting[J]. PNAS, 2012, 109(39):15640-15645.
[16] Ye Y, Xu Y X, Huang L, et al. Roles of adsorption sites in electron transfer from CdS quantum dots to molecular catalyst cobaloxime studied by time-resolved spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(26):17389-17397.
[17] Ye Y, Wang X L, Ye S, et al. Charge-transfer dynamics promoted by hole trap states in CdSe quantum dots-Ni2+ photocatalytic system[J]. Journal of Physical Chemistry C, 2017, 121(32):17112-17120.
[18] Wu Q, Li D, Hou Y, et al. Study of relationship between surface transient photoconductivity and liquid-phase photocatalytic activity of titanium dioxide[J]. Materials Chemistry and Physics, 2007, 102(1):53-59.
[19] Carneiro J T, Savenije T J, Moulijn J A, et al. How phase composition influences optoelectronic and photocatalytic properties of TiO2[J]. Journal of Physical Chemistry C, 2011, 115(5):2211-2217.
[20] Shen S, Wang X L, Chen T, et al. Transfer of photoinduced electrons in anatase-rutile TiO2 determined by time resolved mid-infrared spectroscopy[J]. Journal of Physical Chemistry C, 2014, 118(24):12661-12668.
[21] Kafizas A, Wang X L, Pendlebury S R, et al. Where do photogenerated holes go in anatase:rutile TiO2? A transient absorption spectroscopy study of charge transfer and lifetime[J]. Journal of Physical Chemistry A, 2016, 120(5):715-723.
[22] Wang X L, Shen S, Feng Z C, et al. Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics[J]. Chinese Journal of Catalysis. 2016, 37(12):2059-2068.
[23] Mi Y, Weng Y X. Band alignment and controllable electron migration between rutile and anatase TiO2[J]. Scientific Reports, 2015, 5:11482.
[24] Najafi E, Tang J, Zewail A, et al. Four-dimensional imaging of carrier interface dynamics in p-n junctions[J]. Science, 2015, 347(6218):164-167.
[25] Tachikawa T, Ochi T, Kobori Y. Crystal-face-dependent charge dynamics on a BiVO4 photocatalyst revealed by single-particle spectroelectrochemistry[J]. ACS Catalysis, 2016, 6(4):2250-2256.
[26] Tian W M, Zhao C Y, Leng J, et al. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates[J]. Journal of the American Chemical Society, 2015, 137(39):12458-12461.
[27] Tachikawa T, Yamashita S, Majima T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis[J]. Journal of the American Chemical Society, 2011, 133(18):7197-7204.
[28] Sambur J B, Chen Y C, Choudhary E, et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016, 530(7588):77-80.
[29] Warren S C, Voïtchovsky K, Dotan H, et al. Identifying champion nanostructures for solar water-splitting[J]. Nature Materials. 2013, 12:842-849.
[30] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872):617-620.
[31] Zhu J, Fan F T, Chen R T, et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst[J]. Angewandte Chemie International Edition, 2015, 54(31):5111-9114.
[32] Zhu J, Pang S, Dittrich T, et al. Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles[J]. Nano Letters, 2017, 17(11):6735-6741.
[33] Chen R T, Pang S, An H Y, et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles[J]. Nature Energy, 2018, 3:655-663.
[34] Liu Y, Ye S, Xie H C, et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO 3 photocatalyst[J]. Advanced Materials, 2020, 32(7):1906513.
[35] Chen R T, Pang S, An H Y, et al. Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts[J]. Nano Letters, 2019, 19(1):426-432.
[36] Gao Y Y, Cheng F, Fang W N, et al. Probing of coupling effect induced plasmonic charge accumulation for water oxidation[J]. National Science Review, 2020, doi/10.1093/nsr/nwaa151/5867801.
[37] Bard A J, Fan F R F, Kwak J, et al. Scanning electrochemical microscopy:Introduction and principles[J]. Analytical Chemistry, 1989, 61(2):132-138.
[38] Engstrom R C, Pharr C M. Scanning electrochemical microscopy[J]. Analytical Chemistry, 1989, 61(19):1099A-1104A.
[39] Zigah D, Rodriguez-Lopez J, Bard A J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy[J]. Physical Chemistry Chemical Physics, 2012, 14(37):12764-12772.
[40] Conzuelo F, Schuhmann W, Gutkowski R, et al. High-resolution analysis of photoanodes for water splitting by means of scanning photoelectrochemical microscopy[J]. Analytical Chemistry, 2017, 89(2):1222-1228.