Exclusive: Science and Technology Review in 2020

Memorable sounds in the optics and photonics in 2020

  • ZHU Haidong ,
  • XIE Xinglong ,
  • SHEN Weixing ,
  • ZHU Jianqiang
Expand
  • Naotional Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechnics, Chinese Academy of Sciences, Shanghai 201800, China

Received date: 2020-12-30

  Revised date: 2021-01-05

  Online published: 2021-03-10

Abstract

It is well known that today's world is dominated by science and technology. Since the birth of laser, optics and photonics have penetrated into all aspects of people's life. This article reviews the 2020 major progress in the field of optics and photonics and draws up an inventory of ten optical research directions, in which the related research may likely have enormous impact on human existence and way of life in the future.

Cite this article

ZHU Haidong , XIE Xinglong , SHEN Weixing , ZHU Jianqiang . Memorable sounds in the optics and photonics in 2020[J]. Science & Technology Review, 2021 , 39(1) : 17 -43 . DOI: 10.3981/j.issn.1000-7857.2021.01.002

References

[1] 冯华. 嫦娥五号创造五项中国首次(权威发布)[EB/OL]. (2020-12-18)[2020-12-30]. http://cpc.people.com.cn/n1/2020/1218/c419242-31970609.html.
[2] 中国信通院发布《量子信息技术发展与应用研究报告(2020年)》[EB/OL]. (2020-12-15)[2020-12-30]. http://www.mei.net.cn/xghy/202012/1608033574.html.
[3] 量子计算原型机"九章" 问世, 超越谷歌"量子霸权"[EB/OL]. (2020-12-04)[2020-12-30]. http://dzb.whb.cn/2020-12-04/3/detail-706842.html.
[4] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523):1460-1463.
[5] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express. 2011, 19(22):22029-22106.
[6] Halas N J, Lal S, Chang W S, et al. Nordlander, plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[7] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[8] Zannotti A, Denz C, Alonso M A, et al. Shaping caustics into propagation-invariant light[J]. Nature Communications, 2020, 11:1-7.
[9] Huo P C, Song M W, Zhu W Q, et al. Photorealistic fullcolor nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9):1171-1179.
[10] Palmer B A, Yallapragada V J, Schiffmann N, et al. A highly reflective biogenic photonic material from coreshell birefringent nanoparticles[J]. Nature Nanotechnology, 2020, 15(2):138-144.
[11] Singh S C, ElKabbash M, Li Z L, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 2020, 3:938-946.
[12] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14:102-108.
[13] Kan Y H, Andersen S K H, Ding F, et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 2020, 32(16):1907832.
[14] Epstein I, Alcaraz D, Huang Z Q, et al. Far-field excitation of single graphene plasmon cavities with ultracom-pressed mode volumes[J]. Science, 2020, 368(6496):1219.
[15] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16:810-814.
[16] 高功率激光物理联合实验室. 上海光机所"神光Ⅱ" 5 PW装置圆满完成"飞秒+纳秒组合打靶" 中外合作物理实验[EB/OL]. (2020-03-20)[2020-12-30]. http://www.siom.cas.cn/jgsz/ggljgwlgjsys/xwdt/202003/t20200330_5521787.html.
[17] Li N, Guo X D, Yang X X, et al. Direct observation of highly confined phonon polaritons in suspended mono-layer hexagonal boron nitride[J]. Nature Materials, 2021, 20:43-48.
[18] Huang X J, Guo Q Y, Yang D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a trans-parent medium[J]. Nature Photonics, 2020, 14:82-88.
[19] Qiang J J, Tutunnikov I, Lu P F, et al. Echo in a single vibrationally excited molecule[J]. Nature Physics, 2020, 16:328-333.
[20] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 2020, 8(9):1532-1540.
[21] Edrei E, Scarcelli G. Optical focusing beyond the diffraction limit via vortex-assisted transient microlenses[J]. ACS Photonics, 2020, 7(4):914-918.
[22] Turpin A, Musarra G, Kapitany V, et al. Spatial images from temporal data[J]. Optica, 2020, 7(8):900-905.
[23] Meem M, Banerji S, Majumder A, et al. Inverse-designed achromatic flat lens enabling imaging across the visible and near-ingrared with diameter >3 mm and NA=0.3[J]. Applied Physics Letters, 2020, 117(4):041101.
[24] Wu Y C, Rivenson Y, Wang H D, et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning[J]. Nature Methods, 2019, 16:1323-1331.
[25] Yang B, Chen G, Ghafoor A, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging[J]. Nature Photonics, 2020, 14:693-699.
[26] 中国科学家构建量子计算原型机"九章"[EB/OL]. (2020-12-04)[2020-12-30]. https://baijiahao.baidu.com/s?id=1685117941188828814&wfr=spider&for=pc.
[27] Yang F, Gyger F, Thévenaz L, et al. Intense Brillouin amplification in gas using hollow-core waveguides[J]. Nature Photonics, 2020, 14:700-708.
[28] Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481):1018-1021.
[29] Konatham S R, Maram R, Cortés L R, et al. Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing[J]. Nature Communication, 2020, 11:1-12.
[30] Patsyk A, Sivan U, Segev M, et al. Observation of branched flow of light[J]. Nature, 2020, 583:60-65.
[31] Shen L, Lin X, Shalaginov M, et al. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials[J]. Applied Physics Reviews, 2020, 7:021403.
[32] Wang P, Zheng Y L, Chen X F, et al. Localization and delocalization of light in photonic moiré lattices[J]. Nature, 2020, 577:42-46.
[33] Davis A L, Thomas K N, Goetz F E, et al. Ultra-black camouflage in deep-sea fishes[J]. Current Biology, 2020, 30(17):3470.
[34] Jaimes-Nájera A, Gómez-Correa J E, Coello V, et al. Single function crystalline lens capable of mimicking ciliary body accommodation[J]. Optics Express, 2020, 11(7):3699-3716.
[35] Schubert M, Woolfson L, Barnard I R M, et al. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers[J]. Nature Photonics, 2020, 14:452-458.
[36] Spiryova D, Vorobev A, Klimontov V, et al. Optical uncaging of ADP reveals the early calcium dynamics in single, freely moving platelets[J]. Biomedical Optics Express, 2020, 11(6):3319-3330.
[37] He C, Chang J T, Hu Q, et al. Complex vectorial optics through gradient index lens cascades[J]. Nature Communication, 2019, 10:1-8.
[38] Xiong Y F, Liao Q B, Huang Z P, et al. Ultrahigh rsponsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9):1907242.
[39] Kfir O, Lourenço-Martins H, Storeck G, et al. Control-ling free electrons with optical whispering-gallery modes[J]. Nature, 2020, 582(7810):46-49.
[40] Chen J, Wan C, Chong A, et al. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum[J]. Optics Express, 2020, 28(12):18472-18482.
[41] Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498):1487.
[42] Xiao L, Deng T S, Wang K K. Non-Hermitian bulkboundary correspondence in quantum dynamics[J]. Nature Physics, 2020, 16:761-766.
[43] Couch D E, Hickstein D D, Winters D G, et al. Ultrafast 1 MHz vacuum-ultraviolet source via highly cascaded harmonic generation in negative-curvature hollow-core fibers[J]. Optica, 2020, 7(7):832-837.
[44] Berto P, Philippet L, Osmond J, et al. Tunable and freeform planar optics[J]. Nature Photonics, 2019, 13:649-656.
[45] Steeves J B, Wallace J K, Kettenbeil C, et al. Picometer wavefront sensing using the phase-contrast technique[J]. Optica, 2020, 7(10):1267-1274.
[46] Tuniz A, Bickerton O, Diaz F J, et al. Modular nonlinear hybrid plasmonic circuit[J]. Nature Communication, 2020, 11:1-8.
[47] Kogos L C, Li Y Z, Liu J N, et al. Plasmonic ommatidia for lensless compound-eye vision[J]. Nature Communication, 2020, 11:1-9.
[48] Wang Y, Yu J Y, Mao Y F, et al. Stable, high-performance sodium-based plasmonic devices in the near infrared[J]. Nature, 2020, 581:401-405.
[49] Junjuri R, Gundawar M K. A low-cost LIBS detection system combined with chemometrics for rapid identification of plastic waste[J]. Waste Manage, 2020, 117:48-57.
[50] Ren H, Yu S D, Chao L F, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 2020, 14:154-163.
[51] Du J, Shi J J. 2D Ca3Sn2S7 chalcogenide perovskite:A graphene-like semiconductor with direct bandgap 0.5 eV and ultrahigh carrier mobility 6.7×104 cm2·V-1·s-1[J]. Advanced Materials, 2019, 31:1905643.
[52] Situ G, Fleischer J W. Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid[J]. Nature Photonics, 2020, 14:517-522.
[53] Chong A, Wan C H, Chen J, et al. Generation of spatio-temporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14:350-354.
[54] Gao X M, Yang L C, Lin H, et al. Dirac-vortex topological cavities[J]. Nature Nanotechnology, 2020, 15:1012-1018.
[55] Fu Q D, Wang P, Huang C M, et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices[J]. Nature Photonics, 2020, 14:663-668.
[56] Optics in 2020[EB/OL]. (2020-12-01)[2020-12-30]. https://www.osa-opn.org/home/articles/volume_31/december_2020/features/optics_in_2020/.
[57] 中国光学十大进展2020入选名单[EB/OL]. (2020-12-18)[2020-12-30]. http://www.opticsjournal.net/columns/zggx?type=lntj_index&year=2020.
Outlines

/