Exclusive: Science and Technology Review in 2020

Review of 2020 global deep space activities

  • SHI Peng ,
  • WANG Qin ,
  • BAI Qingjiang ,
  • FAN Quanlin
Expand
  • Space Science and Deep Space Exploration Study Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-12-31

  Revised date: 2021-01-04

  Online published: 2021-03-10

Abstract

The global deep space exploration endeavor was pushed forward steadily in 2020. In this article we review the outstanding engineering success and scientific output in the year, analyze the results of Chang'E 5 sampling return mission and Chang'E 3/4 missions in the Chinese Lunar Exploration Program, compare the main scientific goals and payloads of the three Mars missions by US, China and United Arab Emirates, and summarize the scientific findings about the sun and solar system given by the 35 deep space missions operating in orbit. We also review the scenario of future deep space exploration especially affected by the COVID-19 pandemic. We conclude the article with the prospect of future launches in 2021.

Cite this article

SHI Peng , WANG Qin , BAI Qingjiang , FAN Quanlin . Review of 2020 global deep space activities[J]. Science & Technology Review, 2021 , 39(1) : 69 -87 . DOI: 10.3981/j.issn.1000-7857.2021.01.005

References

[1] 范全林, 时蓬, 李自杰, 等. 2019年深空探测热点回眸[J]. 科技导报, 2020, 38(1):47-64.
[2] 范全林, 白青江, 时蓬. 关于空间科学概念的若干考证[J]. 科技导报, 2020, 38(17):100-114.
[3] Yang W, Lin Y T, New lunar samples returned by Chang'e-5:Opportunities for new discoveries and international collaboration[J/OL]. The Innovation, 2020, https://doi.org/10.1016/j.xinn.2020.100070.
[4] Moons of our Solar System[EB/OL].[2020-12-10]. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=69111§ion=4.6.
[5] "玉兔二号" 月球车行驶里程突破600米[EB/OL].[2020-12-10]. https://baijiahao.baidu.com/s?id=1686749998791-211412&wfr=spider&for=pc.
[6] Li C, Su Y, Pettinelli E, et al. The Moon's farside shallow subsurface structure unveiled by Chang'E-4 Lunar Penetrating Radar[J]. Acta Geochimica, 2020, 6(9):eaay6898.
[7] Lin H L, Yang Y Z, Lin Y T, et al. Photometric properties of lunar regolith revealed by the Yutu-2 rover[J]. Astronomy & Astrophysics, 2020(638):6.
[8] Zhang S Y, Robert F W, Yu J, et al. First measurements of the radiation dose on the lunar surface[J]. Science Advances, 2020, 6(39):1-5.
[9] Yuan Y F, Wang F H, Zhu P M, et al. New constraints on the young lava flow profile in the northern Mare Imbrium[J]. Geophysical Research Letters, 2020, 47(16):1-7.
[10] Chandrayaan-2 completes a year around the Moon[EB/OL].[2020-12-10]. https://www.isro.gov.in/chandrayaan-2-completes-year-around-moon.
[11] Chandrayaan-2 Mission:Initial data release[EB/OL].[2020-12-24]. https://www.isro.gov.in/update/24-dec-2020/chandrayaan-2-mission-initial-data-release.
[12] Li SH, Paul G L, Abigail A F, et al. Widespread hematite at high latitudes of the Moon[J]. Science Advances, 2020, 6(36):1-8.
[13] James G, David Dr, Scott B, et al.. When the Moon had a magnetosphere[J]. Science Advances, 2020, 6(42):1-5.
[14] 魏海燕, 范全林, 时蓬. 欧美发射太阳轨道探测器推动抵近太阳观测[J]. 空间科学学报, 2020, 40(2):147-150.
[15] Solar orbiter[EB/OL].[2020-12-24]. https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter.
[16] Parker Solar Probe team hears first whispers of the solar wind's birth[EB/OL].[2020-12-20]. https://www.jhuapl.edu/FeatureStory/200114.
[17] Parker Solar Probe Encounters[EB/OL].[2020-12-20]. https://sppgway.jhuapl.edu/encounters.
[18] 时蓬, 范全林, 李自杰. 2020年全球重要空间科学发射任务[J]. 空间科学学报, 2020, 40(1):1-4.
[19] Mars 2020 Perseverance Rover[EB/OL].[2020-12-08]. https://www.jpl.nasa.gov/missions/mars-2020-perseverance-rover.
[20] Mars 2020 Perseverance Rover instruments[EB/OL].[2020-12-08]. https://mars.nasa.gov/mars2020/spacecraft/instruments.
[21] 赵宇鴳, 周迪圣, 李雄耀, 等. 国际火星探测科学目标演变与未来展望[J]. 科学通报, 2020, 65(23):2439-2453.
[22] Rippling ice and storms at Mars' north pole[EB/OL].[2020-12-08]. http://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Rippling_ice_and_storms_at_Mars_north_pole.
[23] Anna A F, Franck M, Oleg K, et al. Stormy water on Mars:The distribution and saturation of atmospheric water during the dusty season[J]. Science, 367(6475):297-300.
[24] ExoMars finds new gas signatures in the martian atmosphere[EB/OL].[2020-12-08]. http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/ExoMars_finds_new_gas_signatures_in_the_martian_atmosphere.
[25] Olsen K S, Lefèvre F, Montmessin F, et al. First detection of ozone in the mid-infrared at Mars:implications for methane detection[J]. Astronomy & Astrophysics, 2020(639):1-7.
[26] Trokhimovskiy A, Perevalov V, Korablev O, et al. First observation of the magnetic dipole CO2 absorption band at 3.3μm in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument[J]. Astronomy & Astrophysics, 2020(639):1-7.
[27] ExoMars spots unique green glow at the Red Planet[EB/OL].[2020-12-08]. http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Exo Mars/ExoMars_spots_unique_green_glow_at_the_Red_Planet.
[28] Gérard J C, Aoki S, Willame Y, et al. Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations[J]. Nature Astronomy, 2020, 4(11):1-4.
[29] Banerdt W B, Smrekar S E, Banfield D, et al. Initial results from the InSight mission on Mars[J]. Nature Geoscience, 2020(13):183-189.
[30] Johnson C L, Mittelholz A, Langlais B, et al. Crustal and time-varying magnetic fields at the InSight landing site on Mars[J]. Nature Geoscience, 2020(13):199-204.
[31] Banfield D, Spiga A, Newman C, et al. The atmosphere of Mars as observed by InSight[J]. Nature Geoscience, 2020(13):190-198.
[32] Giardini D, Lognonné P, Banerdt W B, et al. The seismicity of Mars[J]. Nature Geoscience, 2020(13):205-212.
[33] LognonnéP, Banerdt W B, Pike W T, et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data[J]. Nature Geoscience, 2020(13):213-220.
[34] Golombek M, Warner N H, Grant J A, et al. Geology of the InSight landing site on Mars[J]. Nature Communications, 2020, 11(1014):1-11.
[35] A year of surprising science from NASA's InSight mars mission[EB/OL].[2020-12-08]. https://www.nasa.gov/feature/jpl/a-year-of-surprising-science-from-nasas-insight-mars-mission.
[36] Takeshi H, Hayashi Y Y, Shigeto W, et al. How waves and turbulence maintain the super-rotation of Venus' atmosphere[J]. Science, 2020, 368(6489):405-409.
[37] Becker H N, Alexander J W, Atreya S K, et al. Small lightning flashes from shallow electrical storms on Jupiter[J]. Nature, 2020, 584:55-58.
[38] Rohini S G, Thomas K G, Bertrand B, et al. Possible Transient Luminous Events observed in Jupiter's upper atmosphere[J]. Journal of Geophysical Research:Planets, 2020, 125(11):1-15.
[39] Tristan G, Li C H, Scott J B, et al. Storms and the depletion of ammonia in Jupiter:Ⅱ explaining the juno observations[J]. Journal of Geophysical Research:Planets, 2020, 125(8):1-18.
[40] Pluto's icy heart makes winds blow[EB/OL].[2020-12-08]. https://www.sciencedaily.com/releases/2020/02/2002-04112548.htm.
[41] Bertrand T, Forget F, White O, et al. Pluto's beating heart regulates the atmospheric circulation:results from high resolution and multi-year numerical climate simulations[J]. Journal of Geophysical Research:Planets, 2020, 125(12):1-24.
[42] Japan's Hayabusa2 capsule lands with carbon-rich asteroid samples[EB/OL].[2020-12-08]. https://www.sciencemag.org/news/2020/12/japan-s-hayabusa2-capsulelands-carbon-rich-asteroid-samples.
[43] NASA's OSIRIS-REx Successfully Stows Sample of Asteroid Bennu[EB/OL].[2020-12-08]. http://www.parabolicarc.com/2020/10/29/nasas-osiris-rex-successfullystows-sample-of-asteroid-bennu.
[44] DellaGiustina D N, Burke K N, Walsh K J, et al. Variations in color and reflectance on the surface of asteroid (101955) Bennu[J]. Science, 2020, 370(6517):674.
[45] Amy A S, Hannah H K, Victoria E H, et al. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu[J]. Science, 2020, 370(6517):675.
[46] Kaplan H H, Lauretta D S, Simon A A, et al. Bright carbonate veins on asteroid (101955) Bennu:Implications for aqueous alteration history[J]. Science, 2020, 370(6517):676.
[47] Daly M G, Barnouin O S, Seabrook J A, et al. Hemispherical differences in the shape and topography of asteroid (101955) Bennu[J]. Science Advances, 2020, 6(41):1-11.
[48] Rozitis B, Ryan A J, Emery J P, et al. Asteroid (101955) Bennu's weak boulders and thermally anomalous equator[J]. Science Advances, 2020, 6(41):1-18.
[49] Scheeres D J, French A S, Tricarico P, et al. Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu[J]. Science Advances, 2020, 6(41):1-16.
[50] Zucker C, Joshua S S, Edward F S, et al. A large catalog of accurate distances to local molecular clouds:the Gaia DR2 edition[J]. The Astroephysical Journal, 2019, 879:1-20.
[51] You've lost your orbit, captain[EB/OL].[2020-12-08]. http://www.esa.int/Science_Exploration/Space_Science/Gaia/Galactic_crash_may_have_triggered_Solar_System_formation.
[52] Ruiz LT, Gallart C, Bernard E J, et al. The recurrent impact of the Sagittarius dwarf on the star formation history of the Milky Way[J]. Nature Astronomy, 2020(4):965-973.
[53] GAⅡ early data release 3[EB/OL].[2020-12-08]. https://www.cosmos.esa.int/web/gaia/early-data-release-3.
[54] Our deepest view of the X-ray sky[EB/OL].[2020-12-08]. https://www.mpg.de/14999689/our-deepest-view-ofthe-x-ray-sky?c=2249.
[55] Spektr-RG commences sky scanning[EB/OL].[2020-12-31]. http://en.roscosmos.ru/21145/.
[56] Lisse C, Bauer J, Cruikshank D, et al. Spitzer's Solar System studies of comets, centaurs and Kuiper belt objects[J]. Nature Astronomy, 2020(4):930-939.
[57] Trilling D E, Lisse C, Cruikshank D P, et al. Spitzer's Solar System studies of asteroids, planets and the zodiacal cloud[J]. Nature Astronomy, 2020(4):940-946.
[58] 范全林, 时蓬, 王琴, 等. 斯皮策空间望远镜实现最大化科学产出[J]. 科技导报, 2020, 38(20):113-122.
[59] Spitzer steps aside[J]. Nature Astronomy, 2020, 293(4):293.
[60] Trilling D E, Lisse, C, Cruikshank D P, et al. Spitzer's Solar System studies of asteroids, planets and the zodiacal cloud[J]. Nature Astronomy, 2020(4):940-946.
[61] Lisse C, Bauer J, Cruikshank D, et. al. Spitzer's Solar System studies of comets, centaurs and Kuiper belt objects[J]. Nature Astronomy, 2020(4):930-939.
[62] ESA scales down science mission operations amid pandemic[EB/OL].[2020-12-08]. http://www.esa.int/Science_Exploration/Space_Science/ESA_scales_down_science_mission_operations_amid_pandemic.
[63] COSPAR. The COSPAR workshop, planetary protection policy[R]. Houston, Texas:World Space Council, 2011.
[64] COSPARR planetary protection policy[EB/OL].[2020-12-08]. https://cosparhq.cnes.fr/assets/uploads/2019/12/PPPolicyDecember-2017.pdf.
[65] NASA. Planetary protection[EB/OL].[2020-12-08]. https://planetaryprotection.nasa.gov.
[66] National Aeronautics and Space Administration. Biological contamination control for outbound and inbound planetary spacecraft[EB/OL].[2020-12-08]. http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPD&c8020&s7F.
[67] NASA Updates Planetary Protection Policies for Robotic and Human Missions to Earth's Moon and Future Human Missions to Mars[EB/OL].[2020-12-18]. https://www.nasa.gov/feature/nasa-updates-planetary-protection-policies-for-robotic-and-human-missions-to-earth-s-moon.
[68] 徐侃彦, 马玲玲, 印红, 等. 火星无人探测与行星保护[J]. 深空探测学报, 2019, 6(1):9-15.
[69] 白青江, 范全林, 任丽文, 等. 关于太阳系深空资源开发立法的思考[J]. 卫星应用, 2018(8):49-53.
[70] Executive order on encouraging international support for the recovery and use of space resources[EB/OL].[2020-12-22]. https://www.whitehouse.gov/presidential-actions/executive-order-encouraging-international-support-recovery-use-space-resources.
[71] 王国语. 拉开外空采矿竞赛的序幕?——美国行星采矿立法的法律政策分析[J]. 国际太空, 2016(5):12-21.
[72] 何奇松. 新一轮月球竞赛与太空治理的前景[J]. 社会科学文摘, 2019(8):41-43.
[73] Li M, Wang Y, Wang Y, et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports, 2020, 10(1):8506.
[74] Greaves J S, Richards A M S, Bains W, et al. Phosphine gas in the cloud decks of Venus[J]. Nature Astronomy, 2020, 4(10):1-20.
[75] No phosphine in the atmosphere of Venus[EB/OL].[2020-12-18]. https://arxiv.org/abs/2010.14305#:~:text=No%20phosphine%20in%20the%20atmosphere%20of%20Venus%20,%20%20%28or%20arXiv%3A2010.14305-v1%20%5Bastro-ph.EP%5D%20for%20...%20.
Outlines

/