Exclusive: Science and Technology Review in 2020

Review of research focuses on cell mechanics in 2020

  • ZHOU Guanlin ,
  • WANG Chao ,
  • WU Chengwei ,
  • Zhang Wei
Expand
  • State Key Laboratory of Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Laboratory of Biology and Nanomechanics, Dalian University of Technology, Dalian 116024, China

Received date: 2020-12-29

  Revised date: 2021-01-07

  Online published: 2021-03-10

Abstract

This article briefly summarizes the hotspots and advances of cell mechanics research in 2020. The effects of cell membrane surface tension, cell adhesion, cell elastic modulus, and relative stiffness of cell to nanoparticles on biological behaviors of cells and its potential applications are discussed.

Cite this article

ZHOU Guanlin , WANG Chao , WU Chengwei , Zhang Wei . Review of research focuses on cell mechanics in 2020[J]. Science & Technology Review, 2021 , 39(1) : 137 -143 . DOI: 10.3981/j.issn.1000-7857.2021.01.011

References

[1] 龙勉, 季葆华. 细胞分子生物力学[M]. 上海:上海交通大学出版社, 2018:1-5.
[2] Chaudhuri O, Cooper-White J, Janmey P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822):535-546.
[3] Hou Y, Yu L X, Xie W Y, et al. Surface roughness and substrate stiffness synergize to drive cellular mechanoresponse[J]. Nano Letters, 2020, 20(1):748-757.
[4] Belly H D, Stubb A, Yanagida A, et al. Membrane tension gates erk-mediated regulation of pluripotent cell fate[J]. Cell Stem Cell, 2021, 28:1-12.
[5] Bergert M, Lembo S, Sharma S, et al. Cell surface mechanics gate embryonic stem cell differentiation[J]. Cell Stem Cell, 2021, 28:1-8.
[6] Tandja N, Bersi M R, Baillargeon S M, et al. Precise tuning of cortical contractility regulates cell shape during cytokinesis[J]. Cell Reports, 2020, 31(1):107477.
[7] Shuai C J, Yang W J, He C X, et al. A magnetic microenvironment in scaffolds for stimulating bone regeneration[J]. Materials & Design, 2020, 185:108275.
[8] Shuai C J, Cheng Y, Yang W J, et al. Magnetically actuated bone scaffold:Microstructure, cell response and osteogenesis[J]. Composites Part B:Engineering, 2020, 192:107986.
[9] 谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究[J]. 中国工程科学, 2020, 22(5):1-9.
[10] Guimarães C F, Gasperini L, Marques A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5:351-370.
[11] Kwon S, Yang W, Moon D, et al. Comparison of cancer cell elasticity by cell type[J]. Journal of Cancer, 2020, 11(18):5403-5412.
[12] Solon J, Levental L, Sengupta K, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates[J]. Biophysical Journal, 2007, 9(12):4453-4461.
[13] Rheinlaender J, Dimitracopoulos A, Wallmeyer B, et al. Cortical cell stiffness is independent of substrate mechanics[J]. Nature Materials, 2020, 19:1019-1025.
[14] Ombid R J L, Oyong G G, Cabrera E C, et al. In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system[J]. Biomedical Optics Express, 2020, 11(10):6027-6037.
[15] Yu X G, Ding S W, Yang R P, et al. Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor[J]. Ceramics International, 2020, https://doi.org/10.1016/j.ceramint.2020.11.049
[16] Hui Y, Yi X, Wibowo D, et al. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake[J]. Science Advances, 2020, 6(16):eaaz4316.
[17] Zheng Y X, Xing L Y, Chen L Q, et al. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier[J]. Biomaterials, 2020, 262:120323.
Outlines

/