Exclusive: Science and Technology Review in 2020

Hot spot review of biological metamaterials in 2020

  • SI Liming ,
  • DONG Lin ,
  • XU Haoyang ,
  • LV Xin
Expand
  • 1. Laboratory of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of Millimeter wave and Terahertz Technology, Beijing 100081, China

Received date: 2020-12-28

  Revised date: 2021-01-06

  Online published: 2021-03-10

Abstract

In 2020 because of the impact of the COVID-19 pandemic, the study of biologcal metamaterials was a focused topic in the field of metamaterials. By reviewing the application of metamaterials in the biological field and the latest research progress, the future development of biological metamaterials and their related applications are analyzed in this paper.

Cite this article

SI Liming , DONG Lin , XU Haoyang , LV Xin . Hot spot review of biological metamaterials in 2020[J]. Science & Technology Review, 2021 , 39(1) : 185 -191 . DOI: 10.3981/j.issn.1000-7857.2021.01.015

References

[1] Bonde S, Buch-Månson N, Katrine R R, et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations[J]. 2014, 25(36):362001
[2] Shi Z, Zhu A Y, Li Z, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23):eaba3367.
[3] Wu J. A polarization insensitive dual-band tunable graphene absorber at the THz frequency[J]. Physics Letters A, 2020, 384(35):126890.
[4] Hedayati M K, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45):5410-5414
[5] Camacho M, Edwards B, Engheta N achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials[J]. Nature Communications, 2020, 11(1):1-7.
[6] Yang D, Yin Y, Zhang Z, et al. Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing[J]. Materials Letters, 2020, 281:128571.
[7] Li C A, Fu B, Hu Z A, et al. Topological phase transitions in disordered electric quadrupole insulators[J]. Physical Review Letters, 2020, 125(16):16680.
[8] Díaz-Rubio A, Tretyakov S A. Acoustic metasurfaces for scattering-free anomalous reflection and refraction[J]. Physical Review B, 2017, 96(12):125409.
[9] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18):27-39.
[10] 周济, 李龙土. 超材料技术及其应用展望[J]. 中国工程科学, 2018, 20(6):69-74.
[11] Crespo J, Montáns F J. A continuum approach for the large strain finite element analysis of auxetic materials[J]. International Journal of Mechanical Sciences, 2018, 135:441-457.
[12] Elbourne A, Chapman J, Gelmi A, et al. Bacterial-nanostructure interactions:The role of cell elasticity and adhesion forces[J]. Journal of Colloid and Interface Science, 2019, 546:192-210.
[13] Singh N, Sahoo M K, Kale P. Effect of MACE parameters on length of porous silicon nanowires(PSiNWs)[J]. Journal of Crystal Growth, 2018, 496-497:10-14.
[14] Dalby M J, Andrés J G, Salmeron-Sanchez M. Receptor control in mesenchymal stem cell engineering[J]. Nature Reviews Materials, 2017, 3(3):17091-17091.
[15] Higgins S G, Becce M, Belessiotis-Richards A, et al. High-aspect-ratio nanostructured surfaces as biological metamaterials[J]. 2020, 32(9):e1903862.
[16] Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials[J]. Advanced Optical Materials, 2017, 5(22):1700624.
[17] Liu Y, Liu Y, Sun C, et al. Carbon ion radiation inhibits glioma and endothelial cell migration induced by secreted VEGF[J]. PLoS One, 2014, 9(6):e98448.
[18] Choi Y, Oh D Y, Park H, et al. More accurate prediction of metastatic pancreatic cancer patients' survival with prognostic model using both host immunity and tumor metabolic activity[J]. Plos One, 2016, 11(1):e0145692.
[19] Lee T, Lim J, Park K, et al. Peptidoglycan-binding protein metamaterials mediated enhanced and selective capturing of gram-positive bacteria and their specific, ultrasensitive, and reproducible detection via surface-enhanced raman scattering[J]. 2020, 5(10):3099-3108
[20] Bai Z Y, Liu Y S, Kong R R, et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with spintronic terahertz emitter[J]. 2020, 12(32):35895-35902.
[21] Oh H S, Liu S, Jee H S, et al. Chiral poly (fluorene-altbenzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles:plasmonically and structurally enhanced chirality[J]. Journal of the American Chemical Society, 2010, 132(49):17346-17348.
[22] Jing Z, Li Q, Bai Y, et al. Circular dichroism of spatially complementary chiral nanostructures[J]. Nanotechnology, 2020, 31(44):445302.
[23] Wu W, Liu W, Chun Z, et al. Optical rotation and electromagnetically induced transparency in a chiral metamaterial with C4 symmetry[J]. Optics Express, 2020, 28(20):29496.
[24] Kim H, Im S W, Cho N H, et al. γ-Glu-Cys-and CysGly-directed chiral gold nanoparticle and its crystallographic analysis[J]. Angewandte Chemie, 2020, 59(31):12976-12983.
[25] Higgins S G, Becce M, Belessiotis-Richards A, et al. High-aspect-ratio nanostructured surfaces as biological metamaterials[J]. 2020, 32(9):e1903862.
[26] Chiu N F, Yang H T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-mos2 functional film for SPR-based immunosensors[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:234.
[27] Safari S, Selvaganapathy P R, Derardja A, et al. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes[J]. Nanotechnology, 2011, 22(31):315601.
[28] Shokouhi A R, Aslanoglou S, Nisbet D, et al. Vertically configured nanostructure-mediated electroporation:A promising route for intracellular regulations and interrogations[J]. Materials Horizons, 2020, 7(11):2810-2831
[29] Higgins S G, Lo F A, Patrick I, et al. Organic bioelectronics:Using highly conjugated polymers to interface with biomolecules, cells, and tissues in the human body[J]. Advanced Materials Technologies, 2020, 5(11):2000384.
[30] Chen Y P, Wang J, Li X L, et al. Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions[J]. 2020, 1:2001668.
[31] Seong H, Higgins S G, Penders J, et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression and nuclear membrane curvature[J]. ACS Nano, 2020, 14(8):5371-5381.
[32] Bai Z, Liu Y, Kong R, et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with a spintronic terahertz emitter[J]. ACS Applied Materials & Interfaces, 2020, 12(32):35895-35902.
[33] Nie P, Zhu D, Cui Z, et al. Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber[J]. Sensors and Actuators B Chemical, 2019, 307:127642.
[34] Banerjee S, Gardel M L, Schwarz U S. The actin cytoskeleton as an active adaptive material[J]. Annual Review of Condensed Matter Physics, 2020, 11(1):421-439
[35] Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs[J]. Nature Communications, 2020, 11(1):1-11.
[36] Babaee S, Pajovic S, Rafsanjani A, et al. Bioinspired kirigami metasurfaces as assistive shoe grips[J]. Nature Biomedical Engineering, 2020:1-9.
Outlines

/