[1] Bonde S, Buch-Månson N, Katrine R R, et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations[J]. 2014, 25(36):362001
[2] Shi Z, Zhu A Y, Li Z, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23):eaba3367.
[3] Wu J. A polarization insensitive dual-band tunable graphene absorber at the THz frequency[J]. Physics Letters A, 2020, 384(35):126890.
[4] Hedayati M K, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45):5410-5414
[5] Camacho M, Edwards B, Engheta N achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials[J]. Nature Communications, 2020, 11(1):1-7.
[6] Yang D, Yin Y, Zhang Z, et al. Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing[J]. Materials Letters, 2020, 281:128571.
[7] Li C A, Fu B, Hu Z A, et al. Topological phase transitions in disordered electric quadrupole insulators[J]. Physical Review Letters, 2020, 125(16):16680.
[8] Díaz-Rubio A, Tretyakov S A. Acoustic metasurfaces for scattering-free anomalous reflection and refraction[J]. Physical Review B, 2017, 96(12):125409.
[9] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18):27-39.
[10] 周济, 李龙土. 超材料技术及其应用展望[J]. 中国工程科学, 2018, 20(6):69-74.
[11] Crespo J, Montáns F J. A continuum approach for the large strain finite element analysis of auxetic materials[J]. International Journal of Mechanical Sciences, 2018, 135:441-457.
[12] Elbourne A, Chapman J, Gelmi A, et al. Bacterial-nanostructure interactions:The role of cell elasticity and adhesion forces[J]. Journal of Colloid and Interface Science, 2019, 546:192-210.
[13] Singh N, Sahoo M K, Kale P. Effect of MACE parameters on length of porous silicon nanowires(PSiNWs)[J]. Journal of Crystal Growth, 2018, 496-497:10-14.
[14] Dalby M J, Andrés J G, Salmeron-Sanchez M. Receptor control in mesenchymal stem cell engineering[J]. Nature Reviews Materials, 2017, 3(3):17091-17091.
[15] Higgins S G, Becce M, Belessiotis-Richards A, et al. High-aspect-ratio nanostructured surfaces as biological metamaterials[J]. 2020, 32(9):e1903862.
[16] Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials[J]. Advanced Optical Materials, 2017, 5(22):1700624.
[17] Liu Y, Liu Y, Sun C, et al. Carbon ion radiation inhibits glioma and endothelial cell migration induced by secreted VEGF[J]. PLoS One, 2014, 9(6):e98448.
[18] Choi Y, Oh D Y, Park H, et al. More accurate prediction of metastatic pancreatic cancer patients' survival with prognostic model using both host immunity and tumor metabolic activity[J]. Plos One, 2016, 11(1):e0145692.
[19] Lee T, Lim J, Park K, et al. Peptidoglycan-binding protein metamaterials mediated enhanced and selective capturing of gram-positive bacteria and their specific, ultrasensitive, and reproducible detection via surface-enhanced raman scattering[J]. 2020, 5(10):3099-3108
[20] Bai Z Y, Liu Y S, Kong R R, et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with spintronic terahertz emitter[J]. 2020, 12(32):35895-35902.
[21] Oh H S, Liu S, Jee H S, et al. Chiral poly (fluorene-altbenzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles:plasmonically and structurally enhanced chirality[J]. Journal of the American Chemical Society, 2010, 132(49):17346-17348.
[22] Jing Z, Li Q, Bai Y, et al. Circular dichroism of spatially complementary chiral nanostructures[J]. Nanotechnology, 2020, 31(44):445302.
[23] Wu W, Liu W, Chun Z, et al. Optical rotation and electromagnetically induced transparency in a chiral metamaterial with C4 symmetry[J]. Optics Express, 2020, 28(20):29496.
[24] Kim H, Im S W, Cho N H, et al. γ-Glu-Cys-and CysGly-directed chiral gold nanoparticle and its crystallographic analysis[J]. Angewandte Chemie, 2020, 59(31):12976-12983.
[25] Higgins S G, Becce M, Belessiotis-Richards A, et al. High-aspect-ratio nanostructured surfaces as biological metamaterials[J]. 2020, 32(9):e1903862.
[26] Chiu N F, Yang H T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-mos2 functional film for SPR-based immunosensors[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:234.
[27] Safari S, Selvaganapathy P R, Derardja A, et al. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes[J]. Nanotechnology, 2011, 22(31):315601.
[28] Shokouhi A R, Aslanoglou S, Nisbet D, et al. Vertically configured nanostructure-mediated electroporation:A promising route for intracellular regulations and interrogations[J]. Materials Horizons, 2020, 7(11):2810-2831
[29] Higgins S G, Lo F A, Patrick I, et al. Organic bioelectronics:Using highly conjugated polymers to interface with biomolecules, cells, and tissues in the human body[J]. Advanced Materials Technologies, 2020, 5(11):2000384.
[30] Chen Y P, Wang J, Li X L, et al. Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions[J]. 2020, 1:2001668.
[31] Seong H, Higgins S G, Penders J, et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression and nuclear membrane curvature[J]. ACS Nano, 2020, 14(8):5371-5381.
[32] Bai Z, Liu Y, Kong R, et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with a spintronic terahertz emitter[J]. ACS Applied Materials & Interfaces, 2020, 12(32):35895-35902.
[33] Nie P, Zhu D, Cui Z, et al. Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber[J]. Sensors and Actuators B Chemical, 2019, 307:127642.
[34] Banerjee S, Gardel M L, Schwarz U S. The actin cytoskeleton as an active adaptive material[J]. Annual Review of Condensed Matter Physics, 2020, 11(1):421-439
[35] Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs[J]. Nature Communications, 2020, 11(1):1-11.
[36] Babaee S, Pajovic S, Rafsanjani A, et al. Bioinspired kirigami metasurfaces as assistive shoe grips[J]. Nature Biomedical Engineering, 2020:1-9.