Exclusive: Science and Technology Review in 2020

Review of technological hotspots of unmanned aerial vehicle in 2020

  • DUAN Haibin ,
  • SHEN Yankai ,
  • ZHAO Yanjie ,
  • WANG Yin ,
  • NIU Yifeng ,
  • FAN Yanming ,
  • DENG Yimin ,
  • LUO Delin
Expand
  • 1. Bio-inspired Autonomous Flight System(BAFS) Research Group, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. CETC China Academy of Electronics and Information Technology, Beijing 100041, China;
    3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
    5. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    6. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2020-11-29

  Revised date: 2021-01-08

  Online published: 2021-03-10

Abstract

The year 2020 witnessed new opportunities and challenges for the development and application of unmanned aerial vehicles (UAVs). More profound thoughts were invoked on the developments of UAV industry with some new features. This paper tries to summarize and analyze some hot topics and new developments of UAV in 2020 from the aspects of new regulations, key technologies, practical applications and so on. Under the promotion of innovation and relevant policies, the UAV industry will reach a new point and have new vitality. Swarm autonomy, intelligent action and actual combat are still the important directions of UAV developments in the future.

Cite this article

DUAN Haibin , SHEN Yankai , ZHAO Yanjie , WANG Yin , NIU Yifeng , FAN Yanming , DENG Yimin , LUO Delin . Review of technological hotspots of unmanned aerial vehicle in 2020[J]. Science & Technology Review, 2021 , 39(1) : 233 -247 . DOI: 10.3981/j.issn.1000-7857.2021.01.020

References

[1] KCAA. The civil aviation(unmanned aircraft systems) regulations[EB/OL]. (2020-02-19)[2020-12-27]. https://www.kcaa.or.ke/sites/default/files/regulation/Civil%20Aviation%20%28Unmanned%20Aircraft%20Systems%29%20Regulations%202020.pdf.
[2] EASA. EASA publishes first rules for safe drone operations in Europe's cities[EB/OL]. (2020-04-06)[2020-12-27]. https://www.easa.europa.eu/newsroom-and-events/news/easa-publishes-first-rules-safe-drone-operationseuropes-cities.
[3] ANSI. ANSI publishes standardization roadmap for unmanned aircraft systems, version 2.0[EB/OL]. (2020-06-30)[2020-12-27]. https://www.ansi.org/news-and-events/standards-news/all-news/2020/06/ansi-publishes-standardization-roadmap-for-unmanned-aircraft-systems-version-20-30.
[4] GCAA. Drone laws in the United Arab Emirates[EB/OL]. (2020-07-01)[2020-12-27]. https://uavcoach.com/dronelaws-in-uae.
[5] 装备工业二司. 中高风险无人直升机系统世行标准(试行)[EB/OL]. (2020-01-01)[2020-12-27]. http://www.caac.gov.cn/HDJL/YJZJ/202002/P020200225622960426433.pdf.
[6] 装备工业二司. 民用无人机生产制造管理办法(征求意见稿)[EB/OL]. (2020-03-20)[2020-12-27]. https://www.miit.gov.cn/gzcy/yjzj/art/2020/art_07fe2e6a2b6e497eb70c-9996aa48f11b.html.
[7] 中国民航局. 民用无人驾驶航空试验基地(试验区)建设工作指引(征求意见稿)[EB/OL]. (2020-3-27)[2020-12-27]. http://www.caac.gov.cn/HDJL/YJZJ/202003/t202003-27_201782.html.
[8] 国务院办公厅. 国务院2020年立法工作[EB/OL]. (2020-7-8)[2020-12-27]. http://www.gov.cn/zhengce/content/2020-07/08/content_5525117.html.
[9] 无线电管理局. 民用无人机无线电管理暂行办法(征求意见稿)[EB/OL]. (2020-09-28)[2020-12-27]. https://www.miit.gov.cn/jgsj/wgj/gggs/art/2020/art_c705c28a6d1a-4d55af2cba22d8d7582e.html.
[10] UAV EXPERT. Droneinch introduces droneinch 2.0[EB/OL]. (2020-01-10)[2020-12-27]. https://www.uavexpertnews.com/2020/01/droneinch-introduces-droneinch-2-0.
[11] BAE Systems. Solar electric unmanned air vehicle with the potential to transform the air and space market[EB/OL]. (2020-01-27)[2020-12-27]. https://www.baesystems.com/en-us/product/phasa-35.
[12] Falanga D, Kleber K, Scaramuzza D. Dynamic obstacle avoidance for quadrotors with event cameras[J]. Science Robotics, 2020, 5(40):eaaz9712.
[13] Mulgaonkar Y, Liu W, Thakur D, et al. The Tiercel:A novel autonomous micro aerial vehicle that can map the environment by flying into obstacles[C]. IEEE International Conference on Robotics and Automation, 2020:7448-7454.
[14] New Atlas. Mosquito night navigation inspires new drone obstacle avoidance system[EB/OL]. (2020-03-08)[2020-12-27]. https://newatlas.com/science/mosquito-night-navigation-drone-obstacle-avoidance-system/.
[15] Queralta J P, Almansa C M, Schiano F, et al. UWBbased system for UAV localization in GNSS-denied environments:Characterization and dataset[J]. arXiv preprint arXiv, 2003, 04380:2020.
[16] Lindqvist B, Mansouri S S, Agha-Mohammadi A A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 4:6001-6008.
[17] Air Recognition. Animal dynamics creates biomechanical small-UAS based on dragonfly[EB/OL]. (2020-04-24)[2020-12-27]. https://www.airrecognition.com/index.php/focus-analysis-photo-report-aviation-defence-industry/aviation-defence-industry-technology/6172-animaldynamics-creates-biomechanical-small-uas-based-ondragonfly.html.
[18] MIT. Muscle signals can pilot a robot[EB/OL]. (2020-04-27)[2020-12-27]. https://news.mit.edu/2020/conduct-a-bot-muscle-signals-can-pilot-robot-mit-csail-0427.
[19] Hooman H, Ryo S, Daniel L, et al. PufferBot:Actuated expandable structures for aerial robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas:IEEE, 2020:07615.
[20] Ajanic E, Feroskhan M, Mintchev S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5:eabc2897.
[21] Ajanic E, Feroskhan M, Mintchev S, et al. Bio-inspired synergistic wing and tail morphing extends flight capabilities of drones[J]. arXiv, 2020, 2002:02421.
[22] C114通信网. 覆盖能力超6.5KM!全球首例无人机5G高空基站应急通信又有新突破[EB/OL]. (2020-01-02)[2020-12-27]. http://www.c114.com.cn/news/126/a1113276.html.
[23] Liu H Y, Tian X H, Gu C, et al. Drone-based entanglement distribution towards mobile quantum networks[J]. National Science Review, 2020, 7(5):921-928.
[24] 经济日报. 大型商用无人机"鸿雁" 成功首飞[EB/OL]. (2020-01-02)[2020-12-27]. https://baijiahao.baidu.com/s?id=1656509617335160138&wfr=spider&for=pc.
[25] 中国新闻网. 全球首款大型三发通用型多用途无人机首飞成功将于2021年面向市场[EB/OL]. (2020-01-16)[2020-12-27]. https://www.chinanews.com/sh/2020/01-16/9061995.shtml.
[26] Liu P Q, Li Y, Wang S D, et al. Millimeter-wave planar antenna array based on modified bulk silicon micromachining technology[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11):7676-7681.
[27] 张洲宇, 曹云峰, 范彦铭. 基于局部方位信息的无人机避障轨迹规划[J]. 中国科学:技术科学, 2020, 50, Doi:10.1360/SST-2020-0225.
[28] Pang X W, Tang J, Zhao N, et al. Energy-efficient design for mmWave-Enabled NOMA-UAV networks[J]. Science China Information Sciences, 2020, 1:1-16.
[29] 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2020, 43(1):99-111.
[30] Zhang Y Z, Feng W C, Shi G Q, et al. UAV swarm mission planning in dynamic environment using consensusbased bundle algorithm[J]. Sensors, 2020, 20(8):2307-2328.
[31] Zhen Z Y, Chen Y, Wen L D, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100:105826.
[32] Thibbotuwawa, Bocewicz, Radzki, et al. UAV mission planning resistant to weather uncertainty[J]. Sensors, 2020, 20(2):515-576.
[33] Stecz W, Gromada K. UAV Mission planning with SAR application[J]. Sensors, 2020, 20(4):1080-1098.
[34] Semnani S H, Liu H, Everett M, et al. Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2020, 5(2):3221-3226.
[35] Tordesillas J, How J P. MADER:Trajectory planner in multi-agent and dynamic environments[J]. 2020, arXiv:2010.11061.
[36] 段海滨, 申燕凯, 赵彦杰, 等. 2019无人机热点回眸[J]. 科技导报, 2020, 38(1):170-187.
[37] 车飞, 李杰, 牛轶峰. 无人机保距跟踪中的视觉跟踪算法研究[J]. 无人系统技术, 2020, 3(1):19-30.
[38] Duan H B, Xi L, Xu Y, et al. Eagle-vision-inspired visual measurement algorithm for UAV's autonomous landing[J]. International Journal of Robotics and Automation, 2020, 35(2), doi:10.2316/J.2020.206-0221.
[39] Bavle H, Puente P D L, How J, et al. VPS-SLAM:visual planar semantic SLAM for aerial robotic systems[J]. IEEE Access, 2020, 8:60704-60718.
[40] Schilling F, Schiano F, Floreano D. Vision-based flocking in outdoor environments[J]. 2020, arXiv:2012.01245.
[41] Zhang Q X, Chen J R, Ji L, et al. Response delay optimization in mobile edge computing enabled UAV swarm[J]. IEEE Transactions on Vehicular Technology, 2020, 69(99):3280-3295.
[42] Han Y T, Liu L, Duan L J, et al. Towards reliable UAV swarm communication in D2D-Enhanced Cellular Network[J]. 2020, arXiv:2002.04897
[43] 无人机蜂群组网数据链解决方案[EB/OL]. (2020-12-09)[2020-12-27]. https://www.81uav.cn/uav-news/202012/09/72735.html.
[44] Muslimov T Z, Munasypov R A. Consensus-based cooperative control of parallel fixed-wing UAV formations via adaptive backstepping[J]. Aerospace Science and Technology, 2020, 109, 2021-2043.
[45] Soria E, Schiano F, Floreano D. Predictive control of aerial swarms in cluttered environments[J]. 2020, doi. 10.21203/rs.3.rs-82503/v1
[46] 赵建霞, 段海滨, 赵彦杰. 基于鸽群层级交互的有人/无人机集群一致性控制[J]. 上海交通大学学报, 2020, 54(9):973-980.
[47] Wasik A, Lima P U, Martinoli A. A Robust Localization system for multi-robot formations based on an extension of a Gaussian mixture probability hypothesis density filter[J]. Autonomous Robots, 2020, 44:395-414.
[48] 台州公安. 为战疫情台州公安用无人机向市民宣传疫情防控措施[EB/OL]. (2020-02-12)[2020-12-27]. http://zj.sina.com.cn/taizhou/2020-02-12/detail-iimxxstf07550-91.shtml.
[49] 宇辰网. 迅蚁搭建全国首个抗疫"城市空中运输桥梁"[EB/OL]. (2020-02-07)[2020-12-27]. https://www.81uav.cn/uav-news/202002/07/69258.html.
[50] De Zeen. Google's wing drones deliver essentials during coronavirus pandemic[EB/OL]. (2020-04-15)[2020-12-27]. https://www.dezeen.com/2020/04/15/google-wingdrone-delivery-coronavirus-virginia/.
[51] Unmanned systems technology. DARPA conducts ourth OFFSET autonomous swarm experiment[EB/OL]. (2020-01-03)[2020-12-27]. https://www.unmannedsystemstechnology.com/2020/09/darpa-conducts-fourth-offset-autonomous-swarm-experiment.
[52] Army Technology. US DARPA conducts fourth major OFFSET field experiment[EB/OL]. (2020-09-21)[2020-12-27]. https://www.army-technology.com/news/us-darpa-offset-field-experiment/.
[53] Swarm Tactics. DARPA OFFSET Program calls for fifth swarm sprints[EB/OL]. (2020-4-13)[2020-12-27]. http://www.swarmtactics.com/.
[54] ASD News. Leonardo EW capability at the heart of RAF swarming drones capability demonstration[EB/OL]. (2020-10-07)[2020-12-27]. https://www.asdnews.com/news/defense/2020/10/07/leonardo-ew-capability-at-heart-raf-swarming-drones-capability-demonstration.
[55] Advance. Blue Bear demos collaborative 20-drone swarm on BVLOS ops[EB/OL]. (2020-10-21)[2020-12-27]. https://www.adsadvance.co.uk/blue-bear-demos-collaborative-20-drone-swarm-on-bvlos-ops.html.
[56] Janes. China likely to deploy new multiple UAV launcher in near future[EB/OL]. (2020-10-21)[2020-12-27]. https://www.janes.com/defence-news/news-detail/chinalikely-to-deploy-new-multiple-uav-launcher-in-nearfuture.
[57] NBC news. U.S. airstrike kills top Iran general, Qassem Soleimani[EB/OL]. (2020-01-03)[2020-12-27]. https://www.nbcnews.com/news/world/airstrike-kills-top-irangeneral-qassim-suleimani-baghdad-airport-iraqi-n110-9821.
[58] 央视网. 伊朗革命卫队公布无人机拍摄的美国航母照片[EB/OL]. (2020-09-04)[2020-12-27]. http://m.news.cctv.com/2020/09/24/ARTIvHGuzHZXXQ49qrpTS3rN20-0924.shtml.
[59] TOC. Russia fighter was attacked by Armenian or Azerbaijani S-300 missile system[EB/OL]. (2020-09-04)[2020-12-27]. https://bulgarianmilitary.com/amp/2020/10/09/russia-fighter-was-attacked-by-armenian-or-azerbaijani-s-300-missile-system/.
[60] Drone Life. Malek M. Leonardo's Falco Xplorer surveillance drone takes off[EB/OL]. (2020-01-20)[2020-12-27]. https://dronelife.com/2020/01/20/leonardos-falcoxplorer-surveillance-drone-takes-off/
[61] 央广网. 中国首个高原型无人直升机成功首飞[EB/OL]. (2020-05-23)[2020-12-27]. https://baijiahao.baidu.com/s?id=1667467640655608493&wfr=spider&for=pc.
[62] Air Recognition. 5-8 US Air Force has successfully demonstrated data exchange between F-22 F-35 fighter and XQ-58A Valkyrie UAV[EB/OL]. (2020-12-09)[2020-12-27]. https://www.airrecognition.com/index.php/news/defense-aviation-news/2020/december/6759-us-air-force-has-successfully-demonstrated-data-exchange-between-f-22-f-35-fighter-and-xq-58a-valkyrie-uav.html.
[63] Soldier Systems. U.S. army xTechSearch shortlists droneShield[EB/OL]. (2020-02-20)[2020-12-27]. https://soldiersystems.net/2020/01/15/u-s-army-xtechsearch-shortlists-droneshield.
[64] Unmanned Airspace, Iron drone partnership strengthens drone interception capabilities[EB/OL]. (2020-01-07)[2020-12-27]. https://www.unmannedairspace.info/counter-uas-systems-and-policies/iai-iron-drone-partnership-strengthens-drone-interception-capabilities.
[65] Unmanned Airspace. DGS announces new drone detection surveillance radar[EB/OL]. (2020-02-16)[2020-12-27]. https://www.unmannedairspace.info/counter-uas-systems-and-policies/dgs-announces-new-drone-detection-surveillance-radar.
[66] Air Bus. Hensoldt unveils its new Spexer 2000 3rd Gen radar for C-UAS and not only[EB/OL]. (2020-06-22)[2020-12-27]. https://www.edrmagazine.eu/hensoldt-unveils-its-new-spexer-2000-3rd-gen-radar-for-c-uasand-not-only.
[67] Janes. TRD Singapore unveils Orion H+ portable C-UAS system[EB/OL]. (2020-02-01)[2020-12-27]. https://www.janes.com/defence-equipment-intelligence/singapore-airshow-2020-trd-singapore-unveils-orion-h-portable-c-uas-system/.
[68] Forbes. David H. SAVAGE Missile takes aim at drone swarms[EB/OL]. (2020-10-26)[2020-12-27]. https://www.forbes.com/sites/davidhambling/2020/10/26/savagemissile-takes-aim-at-drone-swarms/?sh=317773742bb3.
Outlines

/