Exclusive: Science and Technology Review in 2020

Clean energy in 2020: A research hotspots review

  • LI Cunpu ,
  • CHEN Hongping ,
  • WEI Zidong
Expand
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

Received date: 2020-12-14

  Revised date: 2021-01-01

  Online published: 2021-03-10

Abstract

In 2020, a series of valuable research results were achieved in clean energy technology. Electrochemical conversion of small molecules, such as CO2, accelerated the realization of ‘carbon neutrality’. The conversion efficiency of solar cells exceeded 29.15% in 2020. The alkaline membrane fuel cells' power density exceeded 2.58 W cm-2, making the low-cost fuel cell closer to commercialization. Biomass energies are also prospected in this article.

Cite this article

LI Cunpu , CHEN Hongping , WEI Zidong . Clean energy in 2020: A research hotspots review[J]. Science & Technology Review, 2021 , 39(1) : 248 -260 . DOI: 10.3981/j.issn.1000-7857.2021.01.021

References

[1] De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438):eaav3506.
[2] Popovic S, Smiljanic M, Jovanovic P, et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction[J]. Angewandte Chemie, 2020, 3(10):804-812.
[3] Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J]. Nature Catalysis, 2020, 3(10):804-812.
[4] Wang X, Wang Z, García De Arquer F P, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5(6):478-486.
[5] Shang H, Wang T, Pei J, et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate[J]. Angewandte Chemie, 2020, 59(50):22465-22469.
[6] Han L, Song S, Liu M, et al. Stable and efficient singleatom Zn catalyst for CO2 reduction to CH4[J]. Journal of American Chemistry Socioty, 2020, 142(29):12563-12567.
[7] Fan L, Xia C, Zhu P, et al. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor[J]. Nature Communications, 2020, 11(1):3633.
[8] García De Arquer F P, Dinh C-T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2[J]. Science, 2020, 367(6478):661-666.
[9] Podjaski F, Weber D, Zhang S, et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media[J]. Nature Catalysis, 2020, 3(1):55-63.
[10] Cheng Q, Hu C, Wang G, et al. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of American Chemistry Socioty, 2020, 142(12):5594-5601.
[11] Zhang B, Zhang L, Tan Q, et al. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution[J]. Energy & Environmental Science, 2020, 13(9):3007-3013.
[12] Fan J, Wu J, Cui X, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution[J]. Journal of American Chemistry Socioty, 142(7):3645-3651.
[13] Zhou Z, Pei Z, Wei L, et al. Electrocatalytic hydrogen evolution under neutral pH conditions:current under-standings, recent advances, and future prospects[J]. Energy & Environmental Science, 2020, 13(10):3185-3206.
[14] Qing G, Ghazfar R, Jackowski S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia[J]. Chemical Reviews, 2020, 120(12):5437-5516.
[15] Zhang C, Wang D, Wan Y, et al. Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction[J]. Materials Today, 2020, 40:18-25.
[16] Xu J, Boyd C C, Yu Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science, 2020, 367(6482):1097-1104.
[17] Al-Ashouri A, Kohnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522):1300-1309.
[18] Zeng K, Chen Y, Zhu W-H, et al. Efficient solar cells based on concerted companion dyes containing two complementary components:An alternative approach for cosensitization[J]. Journal of American Chemistry Socioty, 2020, 142(11):5154-5161.
[19] Huaulmé Q, Mwalukuku V M, Joly D, et al. Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency[J]. Nature Energy, 2020, 5(6):468-477.
[20] Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells[J]. Joule, 2019, 3(12):3020-3033.
[21] Luo Z, Ma R, Liu T, et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%[J]. Joule, 2020, 4(6):1236-1247.
[22] Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss[J]. Science, 2020, 369(6511):1615-1620.
[23] Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512):eabb8985.
[24] Shi L, Bucknall M P, Young T L, et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells[J]. Science, 2020, 368(6497):eaba2412.
[25] Li J, Sougrati M T, Zitolo A, et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, doi:10.1038/s41929-020-00545-2
[26] Xie X, He C, Li B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, 3(12):1044-1054.
[27] Luo F, Roy A, Silvioli L, et al. P-block single-metalsite tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction[J]. Nature Materials, 2020, 19(11):1215-1223.
[28] Liang J, Zhao Z, Li N, et al. Oxygen reduction:Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant L10-PtZn fuel cell cathode[J]. Advanced Energy Materials, 2020, 10(29):2070124.
[29] Duan Y, Yu Z-Y, Yang L, et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes[J]. Nature Communications, 2020, 11(1):4789.
[30] Xue Y, Shi L, Liu X, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells[J]. Nature Communications, 2020, 11(1):5651.
[31] Lee Y M, Chen N, Hu C, et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with outstanding alkaline membrane fuel cell performance of 2.58 W cm-2[J]. Angewandte Chemie, 2020. doi:10.1002/anie.202013395.
[32] Kwak W-J, Rosy, Sharon D, et al. Lithium-Oxygen batteries and related systems:Potential, status, and future[J]. Chemical Reviews, 2020, 120(14):6626-6683.
[33] Yu Y, Huang G, Du J-Y, et al. A renaissance of N, Ndimethylacetamide-based electrolytes to promote the cycling stability of Li-O2 batteries[J]. Energy & Environmental Science, 2020, 13(9):3075-3081.
[34] Bi X, Li M, Liu C, et al. Cation additive enabled rechargeable LiOH-based lithium-oxygen batteries[J]. Angewandte Chemie, 2020, 59(51):22978-22982.
[35] Bi Y, Tao J, Wu Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522):1313-1317.
[36] Li W, Lee S, Manthiram A. High-Nickel NMA:A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Advanced Materials, 2020, 32(33):e2002718.
[37] Ryu H-H, Park N-Y, Seo J H, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithiumion batteries[J]. Materials Today, 2020, 36:73-82.
[38] Liu H, Zhu Z, Yan Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823):63-67.
[39] Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage[J]. Science, 2020, 370(6513):192-197.
[40] Chen Y, Wang Z, Li X, et al. Li metal deposition and stripping in a solid-state battery via coble creep[J]. Nature, 2020, 578(7794):251-255.
[41] Zhou D, Zhang M, Sun F, et al. Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization[J]. Nano Energy, 2020, 77:105196.
[42] Xu S, Sun Z, Sun C, et al. Homogeneous and fast ion conduction of PEO-Based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51).
[43] Lei J, Liu T, Chen J, et al. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries[J]. Chem, 2020, 6(10):2533-2557.
[44] Peng L, Wei Z, Wan C, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, 3(9):762-770.
[45] Zhao C, Xu G L, Yu Z, et al. A high-energy and longcycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nature Nanotechnology, 2020. doi:10.1038/s41565-020-00797-w
[46] Zhao C, Wang Q, Yao Z, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517):708-711.
[47] Liu S, Mao J, Zhang L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials, 2020:e2006313.
[48] Liu W, You W, Sun W, et al. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system[J]. Nature Energy, 2020, 5(10):759-767.
[49] Wu X, Luo N, Xie S, et al. Photocatalytic transformations of lignocellulosic biomass into chemicals[J]. Chemical Society Reviews, 2020, 49(17):6198-6223.
[50] Liao Y, Koelewijn S-F, Van Den Bossche G, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484):1385.
Outlines

/