[1] De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438):eaav3506.
[2] Popovic S, Smiljanic M, Jovanovic P, et al. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction[J]. Angewandte Chemie, 2020, 3(10):804-812.
[3] Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4[J]. Nature Catalysis, 2020, 3(10):804-812.
[4] Wang X, Wang Z, García De Arquer F P, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5(6):478-486.
[5] Shang H, Wang T, Pei J, et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate[J]. Angewandte Chemie, 2020, 59(50):22465-22469.
[6] Han L, Song S, Liu M, et al. Stable and efficient singleatom Zn catalyst for CO2 reduction to CH4[J]. Journal of American Chemistry Socioty, 2020, 142(29):12563-12567.
[7] Fan L, Xia C, Zhu P, et al. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor[J]. Nature Communications, 2020, 11(1):3633.
[8] García De Arquer F P, Dinh C-T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2[J]. Science, 2020, 367(6478):661-666.
[9] Podjaski F, Weber D, Zhang S, et al. Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media[J]. Nature Catalysis, 2020, 3(1):55-63.
[10] Cheng Q, Hu C, Wang G, et al. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of American Chemistry Socioty, 2020, 142(12):5594-5601.
[11] Zhang B, Zhang L, Tan Q, et al. Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution[J]. Energy & Environmental Science, 2020, 13(9):3007-3013.
[12] Fan J, Wu J, Cui X, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution[J]. Journal of American Chemistry Socioty, 142(7):3645-3651.
[13] Zhou Z, Pei Z, Wei L, et al. Electrocatalytic hydrogen evolution under neutral pH conditions:current under-standings, recent advances, and future prospects[J]. Energy & Environmental Science, 2020, 13(10):3185-3206.
[14] Qing G, Ghazfar R, Jackowski S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia[J]. Chemical Reviews, 2020, 120(12):5437-5516.
[15] Zhang C, Wang D, Wan Y, et al. Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction[J]. Materials Today, 2020, 40:18-25.
[16] Xu J, Boyd C C, Yu Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science, 2020, 367(6482):1097-1104.
[17] Al-Ashouri A, Kohnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522):1300-1309.
[18] Zeng K, Chen Y, Zhu W-H, et al. Efficient solar cells based on concerted companion dyes containing two complementary components:An alternative approach for cosensitization[J]. Journal of American Chemistry Socioty, 2020, 142(11):5154-5161.
[19] Huaulmé Q, Mwalukuku V M, Joly D, et al. Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency[J]. Nature Energy, 2020, 5(6):468-477.
[20] Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells[J]. Joule, 2019, 3(12):3020-3033.
[21] Luo Z, Ma R, Liu T, et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%[J]. Joule, 2020, 4(6):1236-1247.
[22] Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3 V voltage loss[J]. Science, 2020, 369(6511):1615-1620.
[23] Lu H, Liu Y, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512):eabb8985.
[24] Shi L, Bucknall M P, Young T L, et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells[J]. Science, 2020, 368(6497):eaba2412.
[25] Li J, Sougrati M T, Zitolo A, et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, doi:10.1038/s41929-020-00545-2
[26] Xie X, He C, Li B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, 3(12):1044-1054.
[27] Luo F, Roy A, Silvioli L, et al. P-block single-metalsite tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction[J]. Nature Materials, 2020, 19(11):1215-1223.
[28] Liang J, Zhao Z, Li N, et al. Oxygen reduction:Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant L10-PtZn fuel cell cathode[J]. Advanced Energy Materials, 2020, 10(29):2070124.
[29] Duan Y, Yu Z-Y, Yang L, et al. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes[J]. Nature Communications, 2020, 11(1):4789.
[30] Xue Y, Shi L, Liu X, et al. A highly-active, stable and low-cost platinum-free anode catalyst based on RuNi for hydroxide exchange membrane fuel cells[J]. Nature Communications, 2020, 11(1):5651.
[31] Lee Y M, Chen N, Hu C, et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with outstanding alkaline membrane fuel cell performance of 2.58 W cm-2[J]. Angewandte Chemie, 2020. doi:10.1002/anie.202013395.
[32] Kwak W-J, Rosy, Sharon D, et al. Lithium-Oxygen batteries and related systems:Potential, status, and future[J]. Chemical Reviews, 2020, 120(14):6626-6683.
[33] Yu Y, Huang G, Du J-Y, et al. A renaissance of N, Ndimethylacetamide-based electrolytes to promote the cycling stability of Li-O2 batteries[J]. Energy & Environmental Science, 2020, 13(9):3075-3081.
[34] Bi X, Li M, Liu C, et al. Cation additive enabled rechargeable LiOH-based lithium-oxygen batteries[J]. Angewandte Chemie, 2020, 59(51):22978-22982.
[35] Bi Y, Tao J, Wu Y, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522):1313-1317.
[36] Li W, Lee S, Manthiram A. High-Nickel NMA:A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries[J]. Advanced Materials, 2020, 32(33):e2002718.
[37] Ryu H-H, Park N-Y, Seo J H, et al. A highly stabilized Ni-rich NCA cathode for high-energy lithiumion batteries[J]. Materials Today, 2020, 36:73-82.
[38] Liu H, Zhu Z, Yan Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823):63-67.
[39] Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage[J]. Science, 2020, 370(6513):192-197.
[40] Chen Y, Wang Z, Li X, et al. Li metal deposition and stripping in a solid-state battery via coble creep[J]. Nature, 2020, 578(7794):251-255.
[41] Zhou D, Zhang M, Sun F, et al. Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization[J]. Nano Energy, 2020, 77:105196.
[42] Xu S, Sun Z, Sun C, et al. Homogeneous and fast ion conduction of PEO-Based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51).
[43] Lei J, Liu T, Chen J, et al. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries[J]. Chem, 2020, 6(10):2533-2557.
[44] Peng L, Wei Z, Wan C, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, 3(9):762-770.
[45] Zhao C, Xu G L, Yu Z, et al. A high-energy and longcycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nature Nanotechnology, 2020. doi:10.1038/s41565-020-00797-w
[46] Zhao C, Wang Q, Yao Z, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517):708-711.
[47] Liu S, Mao J, Zhang L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials, 2020:e2006313.
[48] Liu W, You W, Sun W, et al. Ambient-pressure and low-temperature upgrading of lignin bio-oil to hydrocarbons using a hydrogen buffer catalytic system[J]. Nature Energy, 2020, 5(10):759-767.
[49] Wu X, Luo N, Xie S, et al. Photocatalytic transformations of lignocellulosic biomass into chemicals[J]. Chemical Society Reviews, 2020, 49(17):6198-6223.
[50] Liao Y, Koelewijn S-F, Van Den Bossche G, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484):1385.