[1] Green D R. The coming decade of cell death research:Five riddles[J]. Cell, 2019, 177(5):1094-1107.
[2] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis:An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[3] Friedmann Angeli J P, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice[J]. Nature Cell Biology, 2014, 16(12):1180-1191.
[4] Yang W S, SriRamaratnam R, Welsch M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2):317-331.
[5] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3):409-422.
[6] Bochkov V N, Oskolkova O V, Birukov K G, et al. Generation and biological activities of oxidized phospholipids[J]. Antioxid Redox Signal, 2010, 12(8):1009-1059.
[7] Brigelius-Flohe R, Maiorino M. Glutathione peroxidases[J]. Biochimica et Biophysica Acta, 2013, 1830(5):3289-3303.
[8] Yang W S, Stockwell B R. Ferroptosis:Death by lipid peroxidation[J]. Trends in Cell Biology, 2016, 26(3):165-176.
[9] Cao J Y, Dixon S J. Mechanisms of ferroptosis[J]. Cellular and Molecular Life Sciences, 2016, 73(11-12):2195-2209.
[10] Sato H, Tamba M, Ishii T, et al. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins[J]. Journal of Biological Chemistry, 1999, 274(17):11455-11458.
[11] Dixon S J, Stockwell B R. The role of iron and reactive oxygen species in cell death[J]. Nature Chemical Biology, 2014, 10(1):9-17.
[12] Lu S C. Regulation of glutathione synthesis[J]. Molecular Aspects of Medicine, 2009, 30(1-2):42-59.
[13] Yant L J, Ran Q, Rao L, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults[J]. Free Radical Biology and Medicine, 2003, 34(4):496-502.
[14] Gaschler M M, Andia A A, Liu H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nature Chemical Biology, 2018, 14(5):507-515.
[15] Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma[J]. Journal of Clinical Investigation, 2018, 128(8):3341-3355.
[16] Weiwer M, Bittker J A, Lewis T A, et al. Development of small-molecule probes that selectively kill cells induced to express mutant ras[J]. Bioorganic and Medicinal Chemistry Letters, 2012, 22(4):1822-1826.
[17] Woo J H, Shimoni Y, Yang W S, et al. Elucidating compound mechanism of action by network perturbation analysis[J]. Cell, 2015, 162(2):441-451.
[18] Chang L C, Chiang S K, Chen S E, et al. Heme oxygenase-1 mediates bAY 11-7085 induced ferroptosis[J]. Cancer Letters, 2018(416):124-137.
[19] Ma S, Henson E S, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death & Disease, 2016(7):e2307.
[20] Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Molecular Cell, 2015, 59(2):298-308.
[21] Imoto S, Kono M, Suzuki T, et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis[J]. Transfusion and Apheresis Science, 2018, 57(4):524-531.
[22] Li Q, Han X, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain[J]. JCI Insight, 2017, 2(7):e90777.
[23] NaveenKumar S K, SharathBabu B N, Hemshekhar M, et al. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets[J]. ACS Chemical Biology, 2018, 13(8):1996-2002.
[24] Lin L S, Song J, Song L, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J]. Angewandte Chemie(International Ed. In English), 2018, 57(18):4902-4906.
[25] Yang W S, Kim K J, Gaschler M M, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34):4966-4975.
[26] Yuan H, Li X, Zhang X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochemical and Biophysical Research Communications, 2016, 478(3):1338-1343.
[27] Kagan V E, Mao G, Qu F, et al. Oxidized arachidonic and adrenic pes navigate cells to ferroptosis[J]. Nature Chemical Biology, 2017, 13(1):81-90.
[28] Gai C, Liu C, Wu X, et al. MT1DP loaded by folatemodified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in nonsmall cell lung cancer cells[J]. Cell Death & Disease, 2020, 11(9):751.
[29] Wang M, Mao C, Ouyang L, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA[J]. Cell Death and Differentiation, 2019, 26(11):2329-2343.
[30] Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J]. Cancer Research, 2018, 78(13):3484-3496.
[31] Wang Z, Chen X, Liu N, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis[J]. Molecular Therapy, 2021, 29(1):263-274.
[32] Cheok C F, Verma C S, Baselga J, et al. Translating p53 into the clinic[J]. Nature Reviews:Clinical Oncology, 2011, 8(1):25-37.
[33] Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149(6):1269-1283.
[34] Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545):57-62.
[35] Tarangelo A, Magtanong L, Bieging-Rolett K T, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Reports, 2018, 22(3):569-575.
[36] Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Reports, 2017, 20(7):1692-1704.
[37] Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nature Cell Biology, 2018, 20(10):1181-1192.
[38] Miess H, Dankworth B, Gouw A M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma[J]. Oncogene, 2018, 37(40):5435-5450.
[39] Faronato M, Muzzonigro G, Milanese G, et al. Increased expression of 5-lipoxygenase is common in clear cell renal cell carcinoma[J]. Histology and Histopathology, 2007, 22(10):1109-1118.
[40] Zou Y, Palte M J, Deik A A, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J]. Nature Communications, 2019, 10(1):1617.
[41] Jiang Y, Mao C, Yang R, et al. EGLN1/c-myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes[J]. Theranostics, 2017, 7(13):3293-3305.
[42] Abdalkader M, Lampinen R, Kanninen K M, et al. Targeting NRF2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration[J]. Frontiers in Neuroscience, 2018(12):466.
[43] Furukawa M, Xiong Y. Btb protein keap1 targets antioxidant transcription factor NRF2 for ubiquitination by the cullin 3-Roc1 ligase[J]. Molecular and Cellular Biology, 2005, 25(1):162-171.
[44] Tonelli C, Chio I I C, Tuveson D A. Transcriptional regulation by NRF2[J]. Antioxid Redox Signal, 2018, 29(17):1727-1745.
[45] Moinova H R, Mulcahy R T. Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of NRF-2 to an electrophile responsive element[J]. Biochemical and Biophysical Research Communications, 1999, 261(3):661-668.
[46] Wild A C, Moinova H R, Mulcahy R T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor NRF2[J]. Journal of Biological Chemistry, 1999, 274(47):33627-33636.
[47] Qiang Z, Dong H, Xia Y, et al. NRF2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11[J]. Oxidative Medicine and Cellular Longevity, 2020(2020):5146982.
[48] Chanas S A, Jiang Q, McMahon M, et al. Loss of the NRF2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione s-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice[J]. Biochemical Journal, 2002, 365(Pt 2):405-416.
[49] Harvey C J, Thimmulappa R K, Singh A, et al. NRF2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress[J]. Free Radical Biology and Medicine, 2009, 46(4):443-453.
[50] Hawkes H J, Karlenius T C, Tonissen K F. Regulation of the human thioredoxin gene promoter and its key substrates:A study of functional and putative regulatory elements[J]. Biochimica et Biophysica Acta, 2014, 1840(1):303-314.
[51] Zhang P, Wei Y, Wang L, et al. ATM-mediated stabilization of AEB1 promotes DNA damage response and radioresistance through CHK1[J]. Nature Cell Biology, 2014, 16(9):864-875.
[52] Fischer K R, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance[J]. Nature, 2015, 527(7579):472-476.
[53] Zheng X, Carstens J L, Kim J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer[J]. Nature, 2015, 527(7579):525-530.
[54] Viswanathan V S, Ryan M J, Dhruv H D, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664):453-457.
[55] Gubelmann C, Schwalie P C, Raghav S K, et al. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network[J]. Elife, 2014(3):e03346.
[56] Elgendy S M, Alyammahi S K, Alhamad D W, et al. Ferroptosis:An emerging approach for targeting cancer stem cells and drug resistance[J]. Critical Reviews in Oncology/Hematology, 2020(155):103095.
[57] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849.
[58] Jiang M, Qiao M, Zhao C, et al. Targeting ferroptosis for cancer therapy:Exploring novel strategies from its mechanisms and role in cancers[J]. Translational Lung Cancer Research, 2020, 9(4):1569-1584.
[59] Tang D, Kroemer G. Ferroptosis[J]. Current Biology, 2020, 30(21):1292-1297.
[60] Wang Y, Wei Z, Pan K, et al. The function and mechanism of ferroptosis in cancer[J]. Apoptosis, 2020, 25(11-12):786-798.
[61] Wu Y, Yu C, Luo M, et al. Ferroptosis in cancer treatment:Another way to rome[J]. Frontiers in Oncology, 2020(10):571127.
[62] Basuli D, Tesfay L, Deng Z, et al. Iron addiction:A novel therapeutic target in ovarian cancer[J]. Oncogene, 2017, 36(29):4089-4099.
[63] Hao S, Yu J, He W, et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells[J]. Neoplasia, 2017, 19(12):1022-1032.
[64] Yagoda N, von Rechenberg M, Zaganjor E, et al. Rasraf-mek-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007, 447(7146):864-868.
[65] Yang L, Dong Y, Li Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/NOTCH1 pathway in non-small cell lung cancer[J]. International Journal of Cancer, 2019, 145(4):1099-1110.
[66] Zhang Y, Tan H, Daniels J D, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model[J]. Cell Chemical Biology, 2019, 26(5):623-633.
[67] Yu H, Yang C, Jian L, et al. Sulfasalazineinduced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor[J]. Oncology Reports, 2019, 42(2):826-838.
[68] Dixon S J, Patel D N, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife, 2014(3):e02523.
[69] Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system Xc- and thereby promotes tumor growth[J]. Cancer Cell, 2011, 19(3):387-400.
[70] Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. International Journal of Cancer, 2013, 133(7):1732-1742.
[71] Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Letters, 2015, 356(2):971-977.
[72] Dixon S J, Winter G E, Musavi L S, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chemical Biology, 2015, 10(7):1604-1609.
[73] Yang W S, Stockwell B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-ras-harboring cancer cells[J]. Chemistry and Biology, 2008, 15(3):234-245.
[74] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nature Chemical Biology, 2016, 12(7):497-503.
[75] Fang S, Yu X, Ding H, et al. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors[J]. Biochemical and Biophysical Research Communications, 2018, 503(1):297-303.
[76] Mai T T, Hamai A, Hienzsch A, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes[J].Nature Chemistry, 2017, 9(10):1025-1033.
[77] Eling N, Reuter L, Hazin J, et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells[J]. Oncoscience, 2015, 2(5):517-532.
[78] Greenshields A L, Shepherd T G, Hoskin D W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate[J]. Molecular Carcinogenesis, 2017, 56(1):75-93.
[79] Ou W, Mulik R S, Anwar A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma[J]. Free Radical Biology and Medicine, 2017(112):597-607.
[80] Zhang F, Li F, Lu G H, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer[J]. ACS Nano, 2019, 13(5):5662-5673.
[81] Skouta R, Dixon S J, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models[J]. Journal of the American Chemical Society, 2014, 136(12):4551-4556.
[82] Ubellacker J M, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020, 585(7823):113-118.
[83] Zou Y, Henry W S, Ricq E L, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion[J]. Nature, 2020, 585(7826):603-608.
[84] Zhang X, Sui S, Wang L, et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin[J]. Journal of Cellular Physiology, 2020, 235(4):3425-3437.
[85] Daher B, Parks S K, Durivault J, et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses[J]. Cancer Research, 2019, 79(15):3877-3890.
[86] Guo J, Xu B, Han Q, et al. Ferroptosis:A novel anti-tumor action for cisplatin[J]. Cancer Research and Treatment, 2018, 50(2):445-460.
[87] Liu Q, Wang K. The induction of ferroptosis by impairing STAT3/NRF2/GPX4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J]. Cell Biology International, 2019, 43(11):1245-1256.
[88] Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system Xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Scientific Reports, 2018, 8(1):968.
[89] Zhou H H, Chen X, Cai L Y, et al. Erastin reverses abcb1-mediated docetaxel resistance in ovarian cancer[J]. Frontiers in Oncology, 2019(9):1398.
[90] Pan X, Lin Z, Jiang D, et al. Erastin decreases radioresistance of nsclc cells partially by inducing GPX4-mediated ferroptosis[J]. Oncology Letters, 2019, 17(3):3001-3008.
[91] Shibata Y, Yasui H, Higashikawa K, et al. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to x-ray irradiation via glutathione starvation in vitro and in vivo[J]. PloS One, 2019, 14(12):e0225931.
[92] Cobler L, Zhang H, Suri P, et al. Xct inhibition sensitizes tumors to gamma-radiation via glutathione reduction[J]. Oncotarget, 2018, 9(64):32280-32297.
[93] Villalpando-Rodriguez G E, Blankstein A R, Konzelman C, et al. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase-1(HO-1) levels[J]. Oxidative Medicine and Cellular Longevity, 2019(2019):9561281.
[94] Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis[J]. International Journal of Oncology, 2018, 52(3):1011-1022.
[95] Hangauer M J, Viswanathan V S, Ryan M J, et al. Drugtolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551(7679):247-250.
[96] Xu T, Ma Y, Yuan Q, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy[J]. ACS Nano, 2020, 14(3):3414-3425.
[97] Lang X, Green M D, Wang W, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11[J]. Cancer Discovery, 2019, 9(12):1673-1685.
[98] Hung M S, Chen I C, Lee C P, et al. Statin improves survival in patients with EGFR-TKI lung cancer:A nationwide population-based study[J]. PloS One, 2017, 12(2):e0171137.
[99] Brown C W, Amante J J, Chhoy P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Developmental Cell, 2019, 51(5):575-586 e574.
[100] Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ros-mediated mechanisms:A radical therapeutic approach[J]. Nature Reviews Drug Discovery, 2009, 8(7):579-591.
[101] Balendiran G K, Dabur R, Fraser D. The role of glutathione in cancer[J]. Cell Biochemistry and Function, 2004, 22(6):343-352.
[102] Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance[J]. Oxidative Medicine and Cellular Longevity, 2013(2013):972913.
[103] Jeschke J, O'Hagan H M, Zhang W, et al. Frequent inactivation of cysteine dioxygenase type 1 contributes to survival of breast cancer cells and resistance to anthracyclines[J]. Clinical Cancer Research, 2013, 19(12):3201-3211.
[104] Zhao H, Li Q, Wang J, et al. Frequent epigenetic silencing of the folate-metabolising gene cystathioninebeta-synthase in gastrointestinal cancer[J]. PloS One, 2012, 7(11):e49683.
[105] Sun X, Ou Z, Xie M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34(45):5617-5625.
[106] Gout P W, Buckley A R, Simms C R, et al. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the Xc- cystine transporter:A new action for an old drug[J]. Leukemia, 2001, 15(10):1633-1640.
[107] Guan J, Lo M, Dockery P, et al. The Xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer:Use of sulfasalazine[J]. Cancer Chemotherapy and Pharmacology, 2009, 64(3):463-472.
[108] Lo M, Ling V, Low C, et al. Potential use of the antiinflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer[J]. Current Oncology (Toronto, Ont.), 2010, 17(3):9-16.
[109] Azadkhan A K, Truelove S C, Aronson J K. The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man[J]. British Journal of Clinical Pharmacology, 1982, 13(4):523-528.
[110] Robe P A, Martin D H, Nguyen-Khac M T, et al. Early termination of isrctn45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults[J]. BMC Cancer, 2009(9):372.
[111] Harris I S, Treloar A E, Inoue S, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell, 2015, 27(2):211-222.
[112] Anderson C P, Reynolds C P. Synergistic cytotoxicity of buthionine sulfoximine (bso) and intensive melphalan (l-pam) for neuroblastoma cell lines established at relapse after myeloablative therapy[J]. Bone Marrow Transplantation, 2002, 30(3):135-140.
[113] Ongaro A, Pellati A, De Mattei M, et al. Enhancement of melphalan activity by buthionine sulfoximine and electroporation in melanoma cells[J]. Anti-Cancer Drugs, 2015, 26(3):284-292.
[114] Mandal P K, Seiler A, Perisic T, et al. System Xc- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency[J]. Journal of Biological Chemistry, 2010, 285(29):22244-22253.
[115] Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784):688-692.
[116] Doll S, Freitas F P, Shah R, et al. Fsp1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698.
[117] Kim S E, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth[J]. Nature Nanotechnology, 2016, 11(11):977-985.