Exclusive: Ocean Energy Development

Influence of the array arrangement of tidal farm on the power generation

  • DU Xiumao ,
  • SI Xiancai ,
  • YUAN Peng ,
  • TAN Junzhe ,
  • GE Jinhui ,
  • WANG Shujie
Expand
  • 1. College of Engineering, Ocean University of China, Qingdao 266100, China;
    2. Ocean Engineering Key Laboratory of Qingdao, Qingdao 266100, China

Received date: 2020-10-12

  Revised date: 2020-12-21

  Online published: 2021-05-14

Abstract

This paper studies the influence of the array arrangement of the tidal farm on the power generation, by considering different row and column spacing combinations. Based on the Delft3D-Flow module, a hydrodynamic model of the Zhaitang Island's waters is established, the site of the tidal farm is selected according to the annual average TSE index distribution, and the vertical placement is determined according to the tidal current characteristics of the Zhaitang Island's waters and the EMEC standards. And through the comparative study of 25 different arrangements, it is shown that within a certain range, the increase of the row and column spacing will reduce the total power of the array, and the changes gradually tend to be flatened.

Cite this article

DU Xiumao , SI Xiancai , YUAN Peng , TAN Junzhe , GE Jinhui , WANG Shujie . Influence of the array arrangement of tidal farm on the power generation[J]. Science & Technology Review, 2021 , 39(6) : 72 -76 . DOI: 10.3981/j.issn.1000-7857.2021.06.010

References

[1] Zhou Z, Benbouzid M, Charpentier J F, et al. Developments in large marine current turbine technologies-A review[J]. Renewable and Sustainable Energy Reviews, 2017, 71:852-858.
[2] 麻常雷, 夏登文, 王萌, 等. 国际海洋能技术进展综述[J]. 海洋技术学报, 2017, 36(4):70-72.
[3] Funke S W, Farrell P E, Piggott M D. Tidal turbine array optimisation using the adjoint approach[J]. Renewable Energy, 2014, 63:658-673.
[4] Divett T, Vennell R, Stevens C. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh[J]. Mathematical, Physical and Engineering Sciences, 2013, 371(1985):20120251.
[5] 刘丞, 汪昆, 汪雄海. 基于粒子群算法的潮流发电机布局[J]. 浙江大学学报(工学版), 2013, 47(12):2087-2093.
[6] Vennell R, Funke S W, Draper S, et al. Designing large arrays of tidal turbines:A synthesis and review[J]. Renewable & Sustainable Energy Reviews, 2015, 41:454-472.
[7] Baston S, Waldman S, Side J. Modelling energy extraction in tidal flows(Terawatt position paper, revision 3.1)[M]. Scotland:MASTS, 2015:75-107.
[8] Waldman S, Bastón S, Nemalidinne R, et al. Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters[J]. Ocean & Coastal Management, 2017, 147:21-36.
[9] Ramos V, Ringwood J V. Implementation and evaluation of the International Electrotechnical Commission specification for tidal stream energy resource assessment:A case study[J]. Energy Conversion & Management, 2016, 127:66-79.
[10] 姜雪英, 王树杰, 司先才, 等. 斋堂岛海域潮流特性分析与微观选址[J]. 太阳能学报, 2018, 39(4):892-899.
[11] Iglesias G, Sánchez M, Carballo R, et al. The TSE index-a new tool for selecting tidal stream sites in depth-limited regions[J]. Renewable Energy, 2012, 48:350-357.
[12] Legrand C. Assessment of tidal energy resource:Marine renewable energy guides[M]. London:British Standards Institution, 2009.
Outlines

/