To improve the fatigue performance of aircraft rotor of TB6 titanium alloy, the effects of laser shock peening (LSP), shot peening (SP) and their combination processing methods on surface integrity and axial fatigue property of the titanium alloy are investigated. The surface topography, residual stress distribution and microstructure are characterized by white light interferometer, X-ray diffraction stress tester and scanning electron microscope. The axial fatigue life and limit are investigated by fatigue tester. Results show that compared with the grinding (GD) specimen under the same test conditions, the fatigue life of LSP specimens is improved by 32.2 times, while the fatigue lifes of SP and the combination processing specimens are both increased by at least 126.4 times. The combination processing method exhibits better improvement for fatigue limit than the SP method.
LUO Xuekun
,
ZHAO Chunling
,
ZHA Xiaohui
,
WANG Xin
,
SONG Yinggang
,
TANG Zhihui
. Effect of laser shock peeing, shot peeing and their combination treatment on surface integrity and axial fatigue property of TB6 titanium alloy[J]. Science & Technology Review, 2021
, 39(9)
: 48
-55
.
DOI: 10.3981/j.issn.1000-7857.2021.09.005
[1] Nakai M, Niinomi M, Hieda J, et al. Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications[J]. Materials Science and Engineering A, 2014, 594:103-110.
[2] Ding J, Hall R, Byrne J. Effects of stress ratio and temperature on fatigue crack growth in a Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2005, 27(10):1551-1558.
[3] Lindemann J, Buque C, Appel F, et al. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia, 2006, 54(4):1155-1164.
[4] Peters J O, Ritchie R O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V[J]. Engineering Fracture Mechanics, 2000, 67(3):193-207.
[5] Zhu L, Hu X, Jiang R, et al. Experimental investigation of small fatigue crack growth due to foreign object damage in titanium alloy TC4[J]. Materials Science and Engineering A, 2019, 739:214-224.
[6] Altenberger I. Alternative mechanical surface treatments:Microstructures, residual stresses & fatigue behavior[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
[7] Field M, Kahles J F, Canmett J T. A review of measuring methods for surface integrity[R]. Switzeland:Ann CIRP, 1972.
[8] Xu Z, Dunleavey J, Antar M, et al. The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes[J]. International Journal of Fatigue, 2018, 111:196-207.
[9] Lainé, S J, Knowles K M, Doorbar P J, et al. Microstructural characterization of metallic shot peened and laser shock peened Ti-6Al-4V[J]. Acta Materialia, 2017, 123:350-361.
[10] Yang Q, Zhou W L, Zhong Y N, et al. Effect of shotpeening on the fretting wear and crack initiation behavior of Ti-6Al-4V dovetail joint specimens[J]. International Journal of Fatigue, 2018, 107:83-95.
[11] Luong H, Hill M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A, 2010, 527:699-707.
[12] Leap M J, Rankin J, Harrison J, et al. Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft[J]. International Journal of Fatigue, 2011, 33:788-799.
[13] Hatamleh O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue, 2019, 31:974-988.
[14] 戴泽峰. 基于纳秒激光冲击波效应的金属表面形貌与性能研究[D]. 镇江:江苏大学, 2014.
[15] 赵少汴. 抗疲劳设计手册[M]. 北京:机械工业出版社, 2015:36-40.
[16] 王欣, 王强, 宋颖刚, 等. 陶瓷丸喷丸对2124铝合金疲劳性能的影响[J]. 材料保护, 2011, 44(9):10-11.
[17] Zhan K, Jiang C H, Ji V. Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes[J]. Materials Letters, 2013, 99:61-64.
[18] Pant B K, Pavan A H V, Prakash R V, et al. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V[J]. International Journal of Fatigue, 2016, 93:38-50.