Exclusive: A new journey into space

Human medical support in space exploration

  • ZHU Xiangying ,
  • HUANG Dinghua
Expand
  • China University of Geosciences, Wuhan 430074, China

Received date: 2020-07-27

  Revised date: 2020-10-26

  Online published: 2021-07-01

Abstract

The oversea researches on human health and safety in space exploration have been focused on the physiological effects of weightlessness and their internal mechanisms for decades. A series of breakthroughs have been made in physiological effects and the mechanisms of diseases, including cardiovascular dysfunction, bone loss, muscle atrophy, space motion diseases, and microgravity enviroment. China's researches in this field started relatively late, however relevant researches have begn to accelerate gradually with the vigorous development of China's space exploration and manned spaceflight. Some gratifying progresses are made in some aspects such as space gravity physiology, astronaut medical supervision and medical insurance, physical and chemical regenerative environmental control and medical insurance, as well as space life science and biotechnology, which relate to space human safety and development. The special researches in molecular medicine are carried out for weightlessness bone loss. The therapeutic drugs are innovated for small nucleic acid molecules of microRNA-214, which successfully slow down the decline of osteogenic capacity and bone-loss rate caused by simulated weightlessness and aging. These breakthroughs provide important medical support for the human space exploration.

Cite this article

ZHU Xiangying , HUANG Dinghua . Human medical support in space exploration[J]. Science & Technology Review, 2021 , 39(11) : 21 -29 . DOI: 10.3981/j.issn.1000-7857.2021.11.003

References

[1] 白延强, 刘朝霞. 面向空间站工程的航天医学实验规划设想[J]. 空军医学杂志, 2012, 28(1):53-54.
[2] Rambaut P C, Johnston R S. Prolonged weightlessness and calcium loss in man[J]. Acta Astronautica, 1979, 6(9):1113-1122.
[3] Vorobyov E I, Gazenko O G, Genin A M, et al. Medical results of Salyut-6 manned space flights[J]. Aviation Space and Environmental Medicine, 1983, 54(2):31-40.
[4] Sibonga J D. Spaceflight-induced bone loss:Is there an osteoporosis risk?[J]. Current Osteoporosis Reports, 2013, 11(2):92-98.
[5] Garcia H D, Hays S M, Tsuji J S. Modeling of blood lead levels in astronauts exposed to lead from microgravity-accelerated bone loss[J]. Aviation Space and Environmental Medicine, 2013, 84(12):1229-1234.
[6] Zwart S R, Pierson D, Mehta S, et al. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation:From cells to bed rest to astronauts[J]. Journal of Bone and Mineral Research, 2010, 25(5):1049-1057.
[7] Lang T. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight[J]. Journal of Bone and Mineral Research, 2004, 19(6):1006-1012.
[8] Lang T F, Leblanc A D, Evans H J, et al. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight[J]. Journal of Bone and Mineral Research, 2006, 21(8):1224-1230.
[9] Hagan R D. Deconditioning and reconditioning[J]. Medicine & Science in Sports & Exercise, 2005, 37(3):527.
[10] Convertino V A. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity[J]. Medicine & Science in Sports & Exercise, 1996, 28(10):45-52.
[11] Jennings R T. Managing space motion sickness[J]. Journal of Vestibular Research Equilibrium & Orientation, 1998, 8(1):67-70.
[12] Baldwin K M. Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle[J]. Medicine and Science in Sports and Exercise, 1996, 28(8):983-987.
[13] Rayman R B. Space physiology[J]. Journal of the American Medical Association, 2006, 296(2):223-228.
[14] Testard I, Ricoul M, Hoffschir F, et al. Radiation-induced chromosome damage in astronauts' lymphocytes[J]. International Hournal of Radiation Biology, 1996, 70(4):403-411.
[15] Cucinotta F A, Durante M. Cancer risk from exposure to galactic cosmic rays:Implications for space exploration by human beings[J]. The Lancet Oncology, 2006, 7(5):431-435.
[16] Mallis M M, Deroshia C W. Circadian rhythms, sleep, and performance in space[J]. Aviation Space and Environmental Medicine, 2005, 76(6):94-107.
[17] 苏洪余, 陈善广, 李建辉, 等. 空间时间生物学研究进展[J]. 航天医学与医学工程, 2008, 21(3):215-223.
[18] Adey W R, Kado R T, Walter D O. Computer analysis of EEG data from Gemini flight GT-7[J]. Aerospace Medicine, 1967, 38(4):345-359.
[19] Gundel A, Polyakov V V, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight[J]. Journal of Sleep Research, 1997, 6(1):1-8.
[20] Monk T H, Kennedy K S, Rose L R, et al. Decreased human circadian pacemaker influence after 100 days in space:A case study[J]. Psychosomatic Medicine, 2001, 63(6):881-885.
[21] Su S N. Past, present and future development of the project of manned space medico-engineering in China[J]. Space Medicine & Medical Engineering, 2003, 16(Suppl 1):471-474.
[22] Xu F. The achievements and propects of Chinese spacecraft engineering[J]. Chinese Space Science & Technology, 2003, 23(1):1-6.
[23] Shen L P. Continuous target of China's manned space project and research direction of space medico-engineering[J]. Space Medicine & Medical Engineering, 2003, 16(Suppl 1):475-481.
[24] Shen X F, Fu L, Deng Y B. Environmental control and life support system of spacecraft[J]. Space Medicine & Medical Engineering, 2003, 16(Suppl 1):543-549.
[25] Zhang J, Xue Y, Wang Y, et al. Experiments on mice during the earth orbital flight in China[J]. Space Medicine & Medical Engineering, 1995, 8(1):53-56.
[26] 中国载人航天工程网. 航天医学基础与应用国家重点实验室挂牌落户航天员中心[N/OL].[2009-12-25]. http://www.cmse.gov.cn/art/2009/12/25/art_912_20503.html
[27] 戴钟铨, 李莹辉, 丁柏, 等. 军事医学与特种医学——军事医学-模拟微重力诱导的细胞微丝变化影响COLIA启动子活性[J]. 中国学术期刊文摘, 2006, 12(21):271-271.
[28] 李莹辉, 万玉民. 空间环境的细胞分子生物学效应与防护研究[C]. 中国生物工程学会, 北京, 2007.
[29] Li Y H. Cell and molecular biology of space medicine in the 21st century[J]. Space Medicine & Medical Engineering, 2003, 16(Suppl 1):588-592.
[30] Miller E F I, Graybiel A. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation[J]. NASA Special Publication, 1973, 314(7):995-999.
[31] Shi H Z, Wang B Z, Gao J Y, et al. Counteracting effect of Chinese herbs on "insufficiency of spleen qi" induced by simulated weightlessness[J]. Space Medicine & Medical Engineering, 1999, 12(3):197-199.
[32] 唐国华. microRNA调节骨丢失研究取得突破性进展[J]. 航天医学与医学工程, 2012, 25(6):453-457.
[33] Wang X G, Guo B S, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation[J]. Nature Medicine, 2013, 19(1):93-100.
[34] Wang C G, Liao Z, Xiao H, et al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214[J]. Experimental and Molecular Pathology, 2019, 107:77-84.
[35] 陈善广, 邓一兵, 李莹辉. 航天医学工程学主要研究进展与未来展望[J]. 航天医学与医学工程, 2018, 31(2):79-89.
[36] 张良长, 李婷, 余青霓, 等. 4人180天集成试验环控生保系统设计及运行概况[J]. 航天医学与医学工程, 2018, 31(2):273-281.
[37] 周抗寒, 傅岚, 韩永强, 等. 再生式环控生保技术研究及进展[J]. 航天医学与医学工程, 2003, 16(增刊1):566-572.
[38] Wang Y, Javed I, Liu Y H, et al. Effect of prolonged simulated microgravity on metabolic proteins in rat hippocampus:Steps toward safe space travel[J]. Journal of Proteome Research, 2016, 15(1):29-37.
[39] Li Y J, Li G Q, Li Y Z, et al. Development and application of an UHPLC-MS method for comparative pharmacokinetic study of phenolic components from dragon's blood in rats under simulated microgravity environment[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121:91-98.
[40] Wang X H, Du J X, Wang D M, et al. Effects of simulated microgravity on human brain nervous tissue[J]. Neuroscience Letters, 2016, 627:199-204.
[41] 王海名, 杨帆, 郭世杰, 等. 空间生命科学研究前沿发展态势分析[J]. 科学观察, 2015, 10(6):37-51.
[42] 袁俊霞, 印红, 马玲玲, 等. 载人航天工程中的微生物科学与技术应用[J]. 载人航天, 2020, 26(2):237-243.
[43] 薛红卫, 汤章城. 空间站生命科学研究的分析和思考[J]. 载人航天, 2011, 17(5):1-6.
Outlines

/