[1] Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K[J]. Journal of the American Chemical Society, 2008, 130(11):3296-3297.
[2] Zhu W J, Huang Y S, Dong C, et al. Synthesis and crystal structure of new rare-earth copper oxyselenides:RCuSeO (R=La, Sm, Gd and Y)[J]. Materials Research Bulletin, 1994, 29(2):143-147.
[3] Quebe P, Terbüchte L J, Jeitschko W. Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure[J]. Journal of Alloys and Compounds, 2000, 302(1):70-74.
[4] Chen X H, Wu T, Wu G, et al. Superconductivity at 43 K in SmFeAsO1-xFx[J]. Nature, 2008, 453(7196):761-762.
[5] Chen G F, Li Z, Wu D, et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs[J]. Physical Review Letters, 2008, 100(24):247002.
[6] Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs[J]. Chinese Physics Letters, 2008, 25(6):2215-2216.
[7] Yang J, Shen X L, Lu W, et al. Superconductivity in some heavy rare-earth iron arsenide REFeAsO1-δ(RE=Ho, Y, Dy and Tb) compounds[J]. New Journal of Physics, 2009, 11(2):025005.
[8] Wen H H, Mu G M, Fang L, et al. Superconductivity at 25 K in hole-doped (La1-xSrx)OFeAs[J]. Europhysics Letters, 2008, 82(1):17009.
[9] Wang C, Li L, Chi S, et al. Thorium-doping-induced superconductivity up to 56 K in Gd1-xThxFeAsO[J]. Europhysics Letters, 2008, 83(6):67006.
[10] Wang X F, Wu T, Wu G, et al. Anisotropy in the electrical resistivity and susceptibility of superconducting BaFe2As2 single crystals[J]. Physical Review Letters, 2009, 102(11):117005.
[11] Jia Y, Cheng P, Fang L, et al. Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals[J]. Applied Physics Letters, 2008, 93(3):032503.
[12] Liu R H, Wu T, Wu G, et al. A large iron isotope effect in SmFeAsO1-xFx and Ba1-xKxFe2As2[J]. Nature, 2009, 459(7243):64-67.
[13] Dong J, Zhang H J, Xu G, et al. Competing orders and spin-density-wave instability in La(O1-xFx)FeAs[J]. Europhysics Letters, 2008, 83(2):27006.
[14] Cho A. New superconductors propel Chinese physicists to forefront[J]. Science, 2008, 320(5875):432-433.
[15] Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide KxFe2Se2(0≤ x ≤ 1.0)[J]. Physical Review B, 2010, 82(18):180520.
[16] Fang M H, Wang H D, Dong C H, et al. Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl, K)FexSe2[J]. Europhysics Letters, 2011, 94(2):27009.
[17] Zhu X, Han F, Mu G, et al. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K[J]. Physical Review B, 2009, 79(22):1377-1381.
[18] Liu Y, Liu Y B, Chen Q, et al. A new ferromagnetic superconductor:CsEuFe4As4[J]. Science Bulletin, 2016, 61(15):1213-1220.
[19] Wang Z C, He C Y, Wu S Q, et al. Superconductivity in KCa2Fe4As4F2 with separate double Fe2As2 layers[J]. Journal of the American Chemical Society, 2016, 138(25):7856-7859.
[20] Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3[J]. Chinese Physics Letters, 2012, 29(3):037402.
[21] Zhang W, Sun Y, Zhang J, et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films[J]. Chinese Physics Letters, 2014, 31(1):017401.
[22] Lu X F, Wang N Z, Wu H, et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe[J]. Nature Materials, 2015, 14(3):325-329.
[23] Shi M Z, Wang N Z, Lei B, et al. Organic-ion-intercalated FeSe-based superconductors[J]. Physics Review Materials, 2018, 2(7):074801.
[24] Zhang Y, Yang L X, Xu M, et al. Nodeless superconducting gap in AxFe2Se2(A=K,Cs) revealed by angle-resolved photoemission spectroscopy[J]. Nature Materials, 2011,10(4):273-277.
[25] Ding H, Richard P, Nakayama K, et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2[J]. Europhysics Letters, 2008, 83(4):47001.
[26] Zhao L, Liu H W, Zhang W T, et al. Multiple nodeless superconducting gaps in (Ba0:6K0:4)Fe2As2 superconductor from angle-resolved photoemission spectroscopy[J]. Chinese Physics Letters, 2008, 25(12):4402.
[27] Hao N, Hu J. Topological phases in the single-layer FeSe[J]. Physical Review X, 2014, 4(3):031053.
[28] Zhu S, Kong L, Cao L, et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor[J]. Science, 2020, 367(6474):189-192.
[29] Liu Q, Chen C, Zhang T, et al. Robust and clean majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe[J]. Physical Review X, 2018, 8(4), 041056.
[30] Song Q, Yu T L, Lou X, et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface[J]. Nature Communications, 2019, 10:758.
[31] Xu Y, Rong H, Wang Q, et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films[J]. Nature Communications, 2021, 12:2840.
[32] Gao Z S, Wang L, Qi Y P, et al. Superconducting properties of granular SmFeAsO1-xFx wires with Tc=52 K prepared by the powder-in-tube method[J]. Superconductor Science and Technology, 2008, 21(11):112001.
[33] Zhang X, Oguro H, Yao C, et al. Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake Coils[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4):7300705.
[34] Wang D L, Zhang Z, Zhang X P, et al. First performance test of a 30 mm iron-based superconductor single pancake coil under a 24 T background field[J], Superconductor Science and Technology, 2019, 32(4), 04LT01.