Exclusive: Development and utilization of abandoned mine resources

Research status and prospect of underground space utilization mode and key technology in goaf based on underground reservoir

  • ZHANG Cun ,
  • JIA Sheng ,
  • WU Shanxi ,
  • LIU Jinbao ,
  • JIAO Yue ,
  • ZHANG Chenxi
Expand
  • 1. School of Energy and Mining Engineering, Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology(Beijing), Beijing 100083, China;
    2. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China;
    3. State Key Laboratory of Groundwater Protection and Utilization by Coal Mining, Beijing 102209, China

Received date: 2020-12-09

  Revised date: 2021-06-17

  Online published: 2021-08-11

Abstract

It is significant to construct underground reservoir to utilize underground space and water resource and energy in goaf, and to promote environmental ecological protection of mining area. Based on typical worldwide cases, this paper discusses three utilization modes of underground space and water resources based on underground reservoir:underground storage and filtration reservoir, pumped storage power station, and development and utilization of mine geothermal energy. Compared with the previous UWR with the tunnel as the main space, the storage capacity is larger and the gangue in the caving zone can be purify the mine water. This makes the capacity of underground reservoir of mine increase greatly. On this basis, the paper summarizes two key scientific problems of underground coal reservoir in China:capacity of underground reservoir and stability control of underground reservoir in mine. Furthermore, the influencing factors of reservoir capacity and stability control of the dam body and the main research methods at the present stage are given, and the follow-up research direction of construction of underground reservoir in the production and resource exhausted mines is proposed.

Cite this article

ZHANG Cun , JIA Sheng , WU Shanxi , LIU Jinbao , JIAO Yue , ZHANG Chenxi . Research status and prospect of underground space utilization mode and key technology in goaf based on underground reservoir[J]. Science & Technology Review, 2021 , 39(13) : 36 -46 . DOI: 10.3981/j.issn.1000-7857.2021.13.004

References

[1] 袁亮, 姜耀东, 王凯, 等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 2018, 43(1):14-20.
[2] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018, 43(6):1487-1503.
[3] Wright I A, Paciuszkiewicz K, Belmer N. Increased water pollution after closure of australia's longest operating underground coal mine:A 13-month study of mine drainage, water chemistry and river ecology[J]. Water Air & Soil Pollution, 2018, 229(3):55.
[4] Liu P, Gao Y, Shang M, et al. Predicting water level rises and their effects on surrounding karst water in an abandoned mine in Shandong, China[J]. Environmental Geology, 2020, 79(1):51.1-51.10.
[5] 贾绍凤, 吕爱峰, 韩雁, 等. 中国水资源安全报告[M]. 北京:科学出版社, 2014.
[6] 中国科学院. 中国可持续发展遥感监测报告[M]. 北京:社会科学文献出版社, 2017
[7] Zhang C, Tu S, Zhao Y. Compaction characteristics of the caving zone in a longwall goaf:A review[J]. Environmental Earth Sciences, 2019, 78(1):27-46.
[8] Zhang C, Tu S, Zhang L. Analysis of broken coal permeability evolution under cyclic loading and unloading conditions by the model based on the hertz contact deformation principle[J]. Transport in Porous Media, 2017, 119(3):739-754.
[9] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1):304-316.
[10] 潘玥, 刘勇, 徐红霞, 等. 徐州东部废弃矿井地下水化学及其时空演化特征分析[J]. 高校地质学报, 2018, 24(2):257-262.
[11] 赵峰华, 孙红福, 李文生. 煤矿酸性矿井水中有害元素的迁移特性[J]. 煤炭学报, 2007, 33(3):261-266.
[12] 张凯, 高举, 蒋斌斌, 等. 煤矿地下水库水-岩相互作用机理实验研究[J]. 煤炭学报, 2019, 44(12):3760-3772.
[13] Tran T Q, Banning A, Wisotzky F, et al. Mine water hydrogeochemistry of abandoned coal mines in the outcropped carboniferous formations, Ruhr Area, Germany[J]. Environmental Earth Sciences, 2020, 79(4):1-16.
[14] Fernandes M M, Vér N, Baeyens B. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite[J]. Applied Geochemistry, 2015, 59:189-199.
[15] 赵丽, 孙艳芳, 杨志斌, 等. 煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J]. 煤炭学报, 2018, 43(1):236-241
[16] Zhao L, Sun C, Yan P, et al. Dynamic changes of nitrogen and dissolved organic matter during the transport of mine water in a coal mine underground reservoir:Column experiments[J]. Journal of Contaminant Hydrology, 2019, 223:103473.
[17] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2):239-246.
[18] Watzlaf G R, Ackman T E. Underground mine water for heating and cooling using geothermal heat pump systems[J]. Mine Water and the Environment, 2006, 25(1):1-14.
[19] Cairney T. Utilisation of disused coal mines as water storage reservoirs[J]. Journal of Hydrology, 1973, 19:251-258.
[20] Ordóñez A, Jardón S, Álvarez R, et al. Hydrogeological definition and applicability of abandoned coal mines as water reservoirs[J]. Journal of Environmental Monitoring, 2012, 14(8):2127-2136.
[21] Pujades E, Orban P, Bodeux S, et al. Underground pumped storage hydropower plants using open pit mines:How do groundwater exchanges influence the efficiency?[J]. Applied Energy, 2017, 190:b135-b146.
[22] 谢和平, 许唯临, 刘超, 等. 地下水利工程战略构想及关键技术展望[J]. 岩石力学与工程学报, 2018, 37(4):781-791.
[23] 张村, 屠世浩, 赵毅鑫, 等. 基于渗流实验的三轴流固耦合离散元数值模拟研究[J]. 矿业科学学报, 2019, 4(1):23-33.
[24] Menéndez J, Loredo J, Galdo M, et al. Energy storage in underground coal mines in NW Spain:Assessment of an underground lower water reservoir and preliminary energy balance[J]. Renewable Energy, 2018, 134:1381-1391.
[25] 谢和平, 侯正猛, 高峰, 等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报, 2015, 40(5):965-972.
[26] 李庭, 顾大钊, 李井峰, 等. 基于废弃煤矿采空区的矿井水抽水蓄能调峰系统构建[J]. 煤炭科学技术, 2018, 46(9):93-98.
[27] 徐生恒, 周涛, 孙海洲, 等. 浅层地能热泵采集系统关键科技问题与对策[J]. 矿业科学学报, 2017, 2(3):219-227.
[28] Álvarez R, Ordóñez A, García R, et al. An estimation of water resources in flooded, connected underground mines[J]. Engineering Geology, 2018, 232:114-122.
[29] Kranz K, Dillenardt J. Mine water utilization for geothermal purposes in Freiberg, Germany:Determination of hydrogeological and thermophysical rock parameters[J]. Mine Water & the Environment, 2010, 29(1):68-76.
[30] Menéndez J, Ordóñez A, Álvarez R, et al. Energy from closed mines:Underground energy storage and geothermal applications[J]. Renewable and Sustainable Energy Reviews, 2019, 108:498-512.
[31] Budt M, Wolf D, Span R, et al. A review on compressed air energy storage:Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170:250-268.
[32] 庞义辉, 李全生, 曹光明, 等. 煤矿地下水库储水空间构成分析及计算方法[J]. 煤炭学报, 2019, 44(2):557-566.
[33] 鞠金峰, 许家林, 朱卫兵. 西部缺水矿区地下水库保水的库容研究[J]. 煤炭学报, 2017, 42(2):381-387.
[34] Yavuz H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2):193-205.
[35] Zhang C, Tu S, Zhang L, et al. A methodology for determining the evolution law of gob permeability and its distributions in longwall coal mines[J]. Journal of Geophysics & Engineering, 2016, 13(2):181-193.
[36] 汪北方, 梁冰, 王俊光, 等. 煤矿地下水库岩体碎胀特性试验研究[J]. 岩土力学, 2018, 39(11):178-184.
[37] 梁冰, 汪北方, 姜利国, 等. 浅埋采空区垮落岩体碎胀特性研究[J]. 中国矿业大学学报, 2016, 45(3):475-482.
[38] Chu T X, Yu M G, Jiang D Y. Experimental investigation on the permeability evolution of compacted broken coal[J]. Transport in Porous Media, 2017, 116(2):847-868.
[39] Wang B F, Sun K M, Liang B, et al. Development and application of an experimental device for measuring storage coefficient in a coal mine underground reservoir[J]. Archives of Mining Sciences, 2019, 64(4):655-670.
[40] 赵毅鑫, 曹宝, 张通. 轴压和渗透压对破碎岩石渗透率影响的试验研究[J]. 矿业科学学报, 2018, 3(5):434-441.
[41] 方杰, 宋洪庆, 徐建建, 等. 考虑有效应力影响的煤矿地下水库储水系数计算模型[J]. 煤炭学报, 2019, 44(12):3750-3759.
[42] 张村, 宋子玉, 赵毅鑫, 等. 矿井地下水库破碎岩体运移的DEM-CFD耦合分析[J]. 采矿与岩层控制工程报, 2021, 3(4):043011.
[43] 白东尧, 鞠金峰, 许家林, 等. 李家壕煤矿地下水库人工坝体稳定性研究[J]. 煤炭学报, 2017, 42(7):1839-1845.
[44] 方志远, 鞠金峰, 曹志国, 等. 基于正交异性板模型的煤矿地下水库人工坝体结构优化[J]. 煤炭学报, 2020, 45(4):1375-1384.
[45] 姚强岭, 刘亚鹏, 陈田, 等. 地下水库人工坝体强度损伤演化特征试验研究[J]. 煤炭学报, 2018, 43(4):1111-1117.
[46] Wang F, Zhang C. Reasonable coal pillar design and remote control mining technology for highwall residual coal resources[J]. Royal Society Open Science, 2019, 6(4):181817.
[47] Zhou Z, Zang H, Cao W, et al. Risk assessment for the cascading failure of underground pillar sections considering interaction between pillars[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124:104142.
[48] Li X, Kim E, Walton G. A study of rock pillar behaviors in laboratory and in-situ scales using combined finitediscrete element method models[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 118:21-32.
[49] Renani H R, Martin C D. Modeling the progressive failure of hard rock pillars[J]. Tunnelling & Underground Space Technology, 2018, 74:71-81.
[50] 王方田, 梁宁宁, 李岗, 等. 复杂应力环境煤柱坝体损伤破坏规律研究[J]. 采矿与安全工程学报, 2019, 36(6):1145-1152.
[51] 顾大钊, 颜永国, 张勇, 等. 煤矿地下水库煤柱动力响应与稳定性分析[J]. 煤炭学报, 2016, 41(7):1589-1597.
[52] 王文, 张世威, Liu K, 等. 真三轴动静组合加载饱水煤样动态强度特征研究[J]. 岩石力学与工程学报, 2019, 38(10):2010-2020.
[53] Zhong C, Zhang Z, Ranjith P G, et al. The role of pore water plays in coal under uniaxial cyclic loading[J]. Engineering Geology, 2019, 257:105125.
[54] Sadeghiamirshahidi M, Vitton S J. Laboratory study of gypsum dissolution rates for an abandoned underground mine[J]. Rock Mechanics and Rock Engineering, 2019, 52(7):2053-2066.
[55] Li Z, Xiong Z, Chen H, et al. Analysis of stress-strain relationship of brittle rock containing microcracks under water pressure[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4):1909-1918.
[56] Liu Y, Yin G, Li M, et al. Mechanical properties and failure behavior of dry and water-saturated anisotropic coal under true-triaxial loading conditions[J]. Rock Mechanics and Rock Engineering, 2019, 53:4799-4818.
[57] Yao Q, Chen T, Tang C, et al. Influence of moisture on crack propagation in coal and its failure modes[J]. Engineering Geology, 2019, 258:105156.
[58] Wang F, Liang N, Li G. Damage and failure evolution mechanism for coal pillar dams affected by water immersion in underground reservoirs[J]. Geofluids, 2019, doi:10.1155/2019/2985691.
[59] Bai Q, Tu S, Wang F, et al. Field and numerical investigations of gateroad system failure induced by hard roofs in a longwall top coal caving face[J]. International Journal of Coal Geology, 2017, 173:176-199.
[60] 张村, 韩鹏华, 王方田, 等. 采动水浸作用下矿井地下水库残留煤柱稳定性[J]. 中国矿业大学学报, 2021, 50(2):220-227.
Outlines

/