Exclusive: Innovation and development of the third generation semiconductor

Recent progress of ultraviolet light-emitting diodes

  • LI Jinmin ,
  • YAN Jianchang ,
  • GUO Yanan ,
  • REN Rui ,
  • CAI Tingsong ,
  • WANG Junxi
Expand
  • 1. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. State Key Laboratory of Solid State Lighting, Beijing 100083, China

Received date: 2020-11-13

  Revised date: 2021-02-07

  Online published: 2021-09-07

Abstract

The III-nitride based ultraviolet light-emitting diodes (UV LEDs) have tunable emission wavelengths covering a range from 210nm to 400nm, making them suited to be applied in many fields, such as industrial, environmental, medical and biochemical detection fields. Rapid great technical breakthroughs have been made to improve the performance of the AlGaN UV LEDs over the past few years. However, there is still much room for the improvement of the external quantum efficiency and the wall plug efficiency of the deep-UV LEDs due to the intrinsic properties of the Al-rich AlGaN materials. This paper reviews the recent development of the AlGaN UV LEDs, as well as the key challenges to the efficiency improvement, including the epitaxy quality, the doping efficiency, the quantum structure, the light extraction and the reliability, and the effective solutions. It is estimated that by the year 2025, the single-chip light output power of the deep-UV LED will exceed the watt level, the wall plug efficiency is expected to be increased to over 20%, and the lifetime will reach a level of 104 hours.

Cite this article

LI Jinmin , YAN Jianchang , GUO Yanan , REN Rui , CAI Tingsong , WANG Junxi . Recent progress of ultraviolet light-emitting diodes[J]. Science & Technology Review, 2021 , 39(14) : 30 -41 . DOI: 10.3981/j.issn.1000-7857.2021.14.003

References

[1] Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091):325-328.
[2] Takano T, Mino T, Sakai J, et al. Deep-ultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency[J]. Applied Physics Express, 2017, 10(3):031002.
[3] Yoshikawa A, Hasegawa R, Morishita T, et al. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm[J]. Applied Physics Express, 2020, 13(2):022001.
[4] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deepultraviolet laser diode for room temperature operation[J]. Applied Physics Express, 2019, 12(12):124003.
[5] Schujman S B, Schowalter L J, Bondokov R T, et al. Structural and surface characterization of large diameter, crystalline AlN substrates for device fabrication[J]. Journal of Crystal Growth, 2008, 310(5):887-890.
[6] Amano H, Collazo R, Santi C D, et al. The 2020 UV emitter roadmap[J]. Journal of Physics D:Applied Physics, 2020, 53(50):503001.
[7] Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications:An industrial perspective[J]. Journal of Crystal Growth, 2008, 310(17):4020-4026.
[8] Kinoshita T, Obata T, Nagashima T, et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy[J]. Applied Physics Express, 2013, 6(9):092103.
[9] Liu C, Ooi Y K, Zhang J. Proposal and physics of AlInNdelta-GaN quantum well ultraviolet lasers[J]. Journal of Applied Physics, 2016, 119(8):083102.
[10] Liu D, Cho S J, Park J, et al. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection[J]. Applied Physics Letters, 2018, 112(8):081101.
[11] Zhang Z Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation[J]. Applied Physics Express, 2019, 12(12):124003.
[12] Reshchikov M A, Morkoc H. Luminescence properties of defects in GaN[J]. Journal of Applied Physics, 2005, 97(6):061301.
[13] Kohno T, Sudo Y, Yamauchi M, et al. Internal quantum efficiency and nonradiative recombination rate in InGaN-based near-ultraviolet light-emitting diodes[J]. Japanese Journal of Applied Physics, 2012, 51(7R):072102.
[14] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Si-doped AlN[J]. Applied Physics Letters, 2018, 112(15):152101.
[15] Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD[J]. Applied Physics Letters, 2018, 112(6):062102.
[16] Collazo R, Mita S, Xie J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications[J]. Physica Status Solidi C, 2011, 8(7/8):2031-2033.
[17] Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN[J]. Applied Physics Letters, 2013, 102(1):012105.
[18] Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mg-doped p-type AlxGa1-xN[J]. Applied Physics Letters, 2002, 80(7):1210-1212.
[19] Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap[J]. Journal of Physics D:Applied Physics, 2020, 53(50):503001.
[20] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaNbased deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24):241113.
[21] Dong P, Yan J C, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency[J]. Journal of Crystal Growth, 2014, 395:9-13.
[22] Miyake H, Lin C H, Tokoro K, et al. Preparation of high-quality AlN on sapphire by high-temperature faceto-face annealing[J]. Journal of Crystal Growth, 2016, 456:155-159.
[23] Ni R, Chuo C C, Yang K, et al. AlGaN-based ultraviolet light-emitting diode on high-temperature annealed sputtered AlN template[J]. Journal of Alloys and Compounds, 2019, 794:8-12.
[24] Mehnke F, Trinh X T, Pingel H, et al. Electronic properties of Si-doped AlxGa1-xN with aluminum mole fractions above 80%[J]. Journal of Applied Physics, 2016, 120(14):145702.
[25] Pampili P, Parbrook P J. Doping of III-nitride materials[J]. Materials Science in Semiconductor Processing, 2017, 62:180-191.
[26] Kneissl M, Rass J. III-Nitride ultraviolet emitters[M]. Switzerland:Springer, 2016.
[27] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Si-doped AlN[J]. Applied Physics Letters, 2018, 112(15):152101.
[28] Washiyama S, Reddy P, Sarkar B, et al. The role of chemical potential in compensation control in Si:AlGaN[J]. Journal of Applied Physics, 2020, 127(10):105702.
[29] Blasco R, Ajay A, Robin E, et al. Electrical and optical properties of heavily Ge-doped AlGaN[J]. Journal of Physics D:Applied Physics, 2019, 52(12):125101.
[30] Gordon L, Lyons J L, Janotti A, et al. Hybrid functional calculations of DX centers in AlN and GaN[J]. Physical Review B, 2014, 89(8):085204.
[31] Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN[J]. Applied Physics Letters, 2013, 102(1):012105.
[32] Van de Walle C G, Stampfl C, Neugebauer J, et al. Doping of AlGaN alloys[J]. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4(Suppl 1):890-901.
[33] Sarkar B, Mita S, Reddy P, et al. High free carrier concentration in p-GaN grown on AlN substrates[J]. Applied Physics Letters, 2017, 111(3):032109.
[34] Chen Y, Wu H, Han E, et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping[J]. Applied Physics Letters, 2015, 106(16):162102.
[35] Ebata K, Nishinaka J, Taniyasu Y, et al. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content[J]. Japanese Journal of Applied Physics, 2018, 57(4S):04FH09.
[36] Zhang L, Ding K, Liu N. X, et al. Theoretical study of polarization-doped GaN-based light-emitting diodes[J]. Applied Physics Letters, 2011, 98(10):101110.
[37] Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6):252105.
[38] Muramoto Y, Kimura M, Nouda S. Development and future of ultraviolet light-emitting diodes:UV-LED will replace the UV lamp[J]. Semiconductor Science and Technology, 2014, 29(8):084004.
[39] Zhang Z H, Chen S W H, Chu C S, et al. nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high Mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13(1):122.
[40] Zhang Z H, Chen S W. H, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7):1846-1850.
[41] Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-uv light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2016, 52(4):3300105.
[42] Chang J Y, Chang H T, Shih Y H, et al. Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration[J]. IEEE Transactions on Electron Devices, 2017, 64(12):4980-4984.
[43] Fang M Q, Tian K K, Chu C S, et al. Manipulation of Si doping concentration for modification of the electric field and carrier injection for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Crystals, 2018, 8(6):258.
[44] Zhang Z H, Tian K K, Chu C S, et al. Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet lightemitting diodes[J]. Optics Express, 2018, 26(14):17977-17987.
[45] Tian K K, Chen Q, Chu C S, et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi:Rapid Research Letters, 2018, 12(1):1700346.
[46] Zhang Z H, Chu C S, Chiu C H, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 2017, 42(21):4533-4536.
[47] Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN[J]. Journal of Crystal Growth, 1998, 189/190:528-531.
[48] Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6):062103.
[49] Gunning B, Lowder J, Moseley M, et al. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN[J]. Applied Physics Letters, 2012, 101(8):082106.
[50] Rettig O, Scholz J P, Steiger N, et al. Investigation of boron containing AlN and AlGaN layers grown by MOVPE[J]. Physica Status Solidi B:Basic Solid State Physics, 2018, 255(5):1700510.
[51] Li X, Sundaram S, Disseix P, et al. AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm[J]. Optical Materials Express, 2015, 5(2):380.
[52] Chu C S, Tian K K, Zhang Y H, et al. Progress in External quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes[J]. Physica Status Solidi A:Applications and Materials Science, 2019, 216(4):1800815.
[53] Sun H, Mitra S, Subedi R C, et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate[J]. Advanced Functional Materials, 2019, 29(48):1905445.
[54] Won J Y, Kim D H, Kang D, et al. Improved light output power of GaN-based ultraviolet light-emitting diode using a mesh-type GaN/SiO2/Al omnidirectional reflector[J]. Physica Status Solidi A:Applications and Materials Science, 2017, 214(8):1600789.
[55] Li J M, Wang J X, Yi X Y, et al. III-nitrides light emitting diodes:Technology and applications[M]. Singapore:Springer, 2020.
[56] Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters[J]. Applied Physics Letters, 2004, 84(25):5264.
[57] Kolbe T, Knauer A, Chua C, et al. Optical polarization characteristics of ultraviolet (In)(Al) GaN multiple quantum well light emitting diodes[J]. Applied Physics Letters, 2010, 97(17):171105.
[58] Ryu H Y, Choi I G, Choi H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 2013, 6(6):062101.
[59] Kashima Y, Maeda N, Matsuura E, et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer[J]. Applied Physics Express, 2017, 11(1):012101.
[60] Guo Y N, Zhang Y, Yan J C, et al. Enhancement of light extraction on AlGaN-based deep-ultraviolet lightemitting diodes using a sidewall reflection method[C]//201613th China International Forum on Solid State Lighting:International Forum on Wide Bandgap Semiconductors China (SSLChina:IFWS). Piscataway, NJ:IEEE, 2016:127-130.
[61] Ichikawa M, Fujioka A, Kosugi T, et al. High-outputpower deep ultraviolet light-emitting diode assembly using direct bonding[J]. Applied Physics Express, 2016, 9(7):072101.
[62] Inoue S I, Tamari N, Taniguchi M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm[J]. Applied Physics Letters, 2017, 110(14):141106.
[63] Guo Y N, Zhang Y, Yan J C, et al. Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening[J]. Applied Physics Letters, 2017, 111(1):011102.
[64] Zhao S, Connie A T, Dastjerdi M H T, et al. Aluminum nitride nanowire light emitting diodes:Breaking the fundamental bottleneck of deep ultraviolet light sources[J]. Scientific Reports, 2015, 5(1):8332.
[65] Yin J, Li Y, Chen S C, et al. Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum[J]. Advanced Optical Materials, 2015, 2(5):451-458.
[66] Alias M S, Tangi M, Holguin-Lerma J A, et al. Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices[J]. Journal of Nanophotonics, 2018, 12(4):1-56.
[67] Hagedorn S, Knauer A, Mogilatenko A, et al. AlN growth on nano-patterned sapphire:A route for cost efficient pseudo substrates for deep UV LEDs[J]. Physica Status Solidi A:Applications and Materials Science, 2016, 213(12):3178-3185.
[68] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaNbased deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24):241113.
[69] Dai J P, Liu B, Zhuang Z, et al. Fabrication of AlGaN nanorods with different Al compositions for emission enhancement in UV range[J]. Nanotechnology, 2017, 28(38):385205.
[70] Conroy M, Zubialevich V Z, Li H, et al. Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods[J]. Journal of Materials Chemistry C, 2015, 3(2):431-437.
[71] Zhang L, Guo Y N, Yan J C, et al. Deep ultraviolet light-emitting diodes with improved performance via nanoporous AlGaN template[J]. Optics Express, 2019, 27(4):4917-4926.
[72] Zhang L, Guo Y N, Yan J C, et al. Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array[J]. Photonics Research, 2019, 7(9):B66-B72.
[73] Ruschel J, Glaab J, Beidoun B, et al. Current-induced degradation and lifetime prediction of 310 nm ultraviolet light-emitting diodes[J]. Photonics Research, 2019, 7(7):B36-B40.
[74] Monti D, Meneghini M, De Santi C, et al. Defect-related degradation of AlGaN-based UV-B LEDs[J]. IEEE Transactions on Electron Devices, 2017, 64(1):200-205.
[75] De Santi C, Caria A, Renso N, et al. Evidence of optically induced degradation in gallium nitride optoelectronic devices[J]. Applied Physics Express, 2018, 11(11):111002.
[76] Glaab J, Ruschel J, Kolbe T, et al. Degradation of (In)AlGaN-based UVB LEDs and migration of hydrogen[J]. IEEE Photonics Technology Letters, 2019, 31(7):529-532.
[77] Pinos A, Marcinkevicius S, Yang J, et al. Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy[J]. Applied Physics Letters, 2009, 95(18):181914.
[78] Sawyer S, Rumyantsev S L, Shur M S. Degradation of AlGaN-based ultraviolet light emitting diodes[J]. SolidState Electronics, 2008, 52:968-972.
[79] Yoshikawa A, Hasegawa R, Morishita T, et al. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm[J]. Applied Physics Express, 2020, 13(2):022001.
[80] Usami S, Mayama N, Toda K, et al. Direct evidence of Mg diffusion through threading mixed dislocations in GaN p-n diodes and its effect on reverse leakage current[J]. Applied Physics Letters, 2019, 114(23):232105.
[81] Monti D, De Santi C, Da Ruos S, et al. High-current stress of UV-B (In)AlGaN-based LEDs:Defect-generation and diffusion processes[J]. IEEE Transactions on Electron Devices, 2019, 66(8):3387-3392.
[82] Moe C G, Reed M L, Garrett G A, et al. Current-induced degradation of high performance deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 2010, 96(21):213512.
[83] Glaab J, Haefke J, Ruschel J, et al. Degradation effects of the active region in UV-C light-emitting diodes[J]. Journal of Applied Physics, 2018, 123(10):104502.
[84] Lobo-Ploch N, Mehnke F, Sulmoni L, et al. Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates[J]. Applied Physics Letters, 2020, 117(11):111102.
[85] Iveland J, Martinelli L, Peretti J, et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection:Identification of the dominant mechanism for efficiency droop[J]. Physical Review Letters, 2013, 110(17):177406.
Outlines

/