[1] Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441(7091):325-328.
[2] Takano T, Mino T, Sakai J, et al. Deep-ultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency[J]. Applied Physics Express, 2017, 10(3):031002.
[3] Yoshikawa A, Hasegawa R, Morishita T, et al. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm[J]. Applied Physics Express, 2020, 13(2):022001.
[4] Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deepultraviolet laser diode for room temperature operation[J]. Applied Physics Express, 2019, 12(12):124003.
[5] Schujman S B, Schowalter L J, Bondokov R T, et al. Structural and surface characterization of large diameter, crystalline AlN substrates for device fabrication[J]. Journal of Crystal Growth, 2008, 310(5):887-890.
[6] Amano H, Collazo R, Santi C D, et al. The 2020 UV emitter roadmap[J]. Journal of Physics D:Applied Physics, 2020, 53(50):503001.
[7] Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications:An industrial perspective[J]. Journal of Crystal Growth, 2008, 310(17):4020-4026.
[8] Kinoshita T, Obata T, Nagashima T, et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy[J]. Applied Physics Express, 2013, 6(9):092103.
[9] Liu C, Ooi Y K, Zhang J. Proposal and physics of AlInNdelta-GaN quantum well ultraviolet lasers[J]. Journal of Applied Physics, 2016, 119(8):083102.
[10] Liu D, Cho S J, Park J, et al. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection[J]. Applied Physics Letters, 2018, 112(8):081101.
[11] Zhang Z Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation[J]. Applied Physics Express, 2019, 12(12):124003.
[12] Reshchikov M A, Morkoc H. Luminescence properties of defects in GaN[J]. Journal of Applied Physics, 2005, 97(6):061301.
[13] Kohno T, Sudo Y, Yamauchi M, et al. Internal quantum efficiency and nonradiative recombination rate in InGaN-based near-ultraviolet light-emitting diodes[J]. Japanese Journal of Applied Physics, 2012, 51(7R):072102.
[14] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Si-doped AlN[J]. Applied Physics Letters, 2018, 112(15):152101.
[15] Bryan I, Bryan Z, Washiyama S, et al. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD[J]. Applied Physics Letters, 2018, 112(6):062102.
[16] Collazo R, Mita S, Xie J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications[J]. Physica Status Solidi C, 2011, 8(7/8):2031-2033.
[17] Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN[J]. Applied Physics Letters, 2013, 102(1):012105.
[18] Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mg-doped p-type AlxGa1-xN[J]. Applied Physics Letters, 2002, 80(7):1210-1212.
[19] Amano H, Collazo R, De Santi C, et al. The 2020 UV emitter roadmap[J]. Journal of Physics D:Applied Physics, 2020, 53(50):503001.
[20] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaNbased deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24):241113.
[21] Dong P, Yan J C, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency[J]. Journal of Crystal Growth, 2014, 395:9-13.
[22] Miyake H, Lin C H, Tokoro K, et al. Preparation of high-quality AlN on sapphire by high-temperature faceto-face annealing[J]. Journal of Crystal Growth, 2016, 456:155-159.
[23] Ni R, Chuo C C, Yang K, et al. AlGaN-based ultraviolet light-emitting diode on high-temperature annealed sputtered AlN template[J]. Journal of Alloys and Compounds, 2019, 794:8-12.
[24] Mehnke F, Trinh X T, Pingel H, et al. Electronic properties of Si-doped AlxGa1-xN with aluminum mole fractions above 80%[J]. Journal of Applied Physics, 2016, 120(14):145702.
[25] Pampili P, Parbrook P J. Doping of III-nitride materials[J]. Materials Science in Semiconductor Processing, 2017, 62:180-191.
[26] Kneissl M, Rass J. III-Nitride ultraviolet emitters[M]. Switzerland:Springer, 2016.
[27] Harris J S, Baker J N, Gaddy B E, et al. On compensation in Si-doped AlN[J]. Applied Physics Letters, 2018, 112(15):152101.
[28] Washiyama S, Reddy P, Sarkar B, et al. The role of chemical potential in compensation control in Si:AlGaN[J]. Journal of Applied Physics, 2020, 127(10):105702.
[29] Blasco R, Ajay A, Robin E, et al. Electrical and optical properties of heavily Ge-doped AlGaN[J]. Journal of Physics D:Applied Physics, 2019, 52(12):125101.
[30] Gordon L, Lyons J L, Janotti A, et al. Hybrid functional calculations of DX centers in AlN and GaN[J]. Physical Review B, 2014, 89(8):085204.
[31] Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN[J]. Applied Physics Letters, 2013, 102(1):012105.
[32] Van de Walle C G, Stampfl C, Neugebauer J, et al. Doping of AlGaN alloys[J]. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4(Suppl 1):890-901.
[33] Sarkar B, Mita S, Reddy P, et al. High free carrier concentration in p-GaN grown on AlN substrates[J]. Applied Physics Letters, 2017, 111(3):032109.
[34] Chen Y, Wu H, Han E, et al. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping[J]. Applied Physics Letters, 2015, 106(16):162102.
[35] Ebata K, Nishinaka J, Taniyasu Y, et al. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content[J]. Japanese Journal of Applied Physics, 2018, 57(4S):04FH09.
[36] Zhang L, Ding K, Liu N. X, et al. Theoretical study of polarization-doped GaN-based light-emitting diodes[J]. Applied Physics Letters, 2011, 98(10):101110.
[37] Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6):252105.
[38] Muramoto Y, Kimura M, Nouda S. Development and future of ultraviolet light-emitting diodes:UV-LED will replace the UV lamp[J]. Semiconductor Science and Technology, 2014, 29(8):084004.
[39] Zhang Z H, Chen S W H, Chu C S, et al. nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high Mg doping efficiency[J]. Nanoscale Research Letters, 2018, 13(1):122.
[40] Zhang Z H, Chen S W. H, Zhang Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7):1846-1850.
[41] Kuo Y K, Chang J Y, Chen F M, et al. Numerical investigation on the carrier transport characteristics of AlGaN deep-uv light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2016, 52(4):3300105.
[42] Chang J Y, Chang H T, Shih Y H, et al. Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration[J]. IEEE Transactions on Electron Devices, 2017, 64(12):4980-4984.
[43] Fang M Q, Tian K K, Chu C S, et al. Manipulation of Si doping concentration for modification of the electric field and carrier injection for AlGaN-based deep-ultraviolet light-emitting diodes[J]. Crystals, 2018, 8(6):258.
[44] Zhang Z H, Tian K K, Chu C S, et al. Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet lightemitting diodes[J]. Optics Express, 2018, 26(14):17977-17987.
[45] Tian K K, Chen Q, Chu C S, et al. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations[J]. Physica Status Solidi:Rapid Research Letters, 2018, 12(1):1700346.
[46] Zhang Z H, Chu C S, Chiu C H, et al. UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections[J]. Optics Letters, 2017, 42(21):4533-4536.
[47] Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN[J]. Journal of Crystal Growth, 1998, 189/190:528-531.
[48] Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure[J]. Applied Physics Letters, 2010, 97(6):062103.
[49] Gunning B, Lowder J, Moseley M, et al. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN[J]. Applied Physics Letters, 2012, 101(8):082106.
[50] Rettig O, Scholz J P, Steiger N, et al. Investigation of boron containing AlN and AlGaN layers grown by MOVPE[J]. Physica Status Solidi B:Basic Solid State Physics, 2018, 255(5):1700510.
[51] Li X, Sundaram S, Disseix P, et al. AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm[J]. Optical Materials Express, 2015, 5(2):380.
[52] Chu C S, Tian K K, Zhang Y H, et al. Progress in External quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes[J]. Physica Status Solidi A:Applications and Materials Science, 2019, 216(4):1800815.
[53] Sun H, Mitra S, Subedi R C, et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate[J]. Advanced Functional Materials, 2019, 29(48):1905445.
[54] Won J Y, Kim D H, Kang D, et al. Improved light output power of GaN-based ultraviolet light-emitting diode using a mesh-type GaN/SiO2/Al omnidirectional reflector[J]. Physica Status Solidi A:Applications and Materials Science, 2017, 214(8):1600789.
[55] Li J M, Wang J X, Yi X Y, et al. III-nitrides light emitting diodes:Technology and applications[M]. Singapore:Springer, 2020.
[56] Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters[J]. Applied Physics Letters, 2004, 84(25):5264.
[57] Kolbe T, Knauer A, Chua C, et al. Optical polarization characteristics of ultraviolet (In)(Al) GaN multiple quantum well light emitting diodes[J]. Applied Physics Letters, 2010, 97(17):171105.
[58] Ryu H Y, Choi I G, Choi H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes[J]. Applied Physics Express, 2013, 6(6):062101.
[59] Kashima Y, Maeda N, Matsuura E, et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer[J]. Applied Physics Express, 2017, 11(1):012101.
[60] Guo Y N, Zhang Y, Yan J C, et al. Enhancement of light extraction on AlGaN-based deep-ultraviolet lightemitting diodes using a sidewall reflection method[C]//201613th China International Forum on Solid State Lighting:International Forum on Wide Bandgap Semiconductors China (SSLChina:IFWS). Piscataway, NJ:IEEE, 2016:127-130.
[61] Ichikawa M, Fujioka A, Kosugi T, et al. High-outputpower deep ultraviolet light-emitting diode assembly using direct bonding[J]. Applied Physics Express, 2016, 9(7):072101.
[62] Inoue S I, Tamari N, Taniguchi M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm[J]. Applied Physics Letters, 2017, 110(14):141106.
[63] Guo Y N, Zhang Y, Yan J C, et al. Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening[J]. Applied Physics Letters, 2017, 111(1):011102.
[64] Zhao S, Connie A T, Dastjerdi M H T, et al. Aluminum nitride nanowire light emitting diodes:Breaking the fundamental bottleneck of deep ultraviolet light sources[J]. Scientific Reports, 2015, 5(1):8332.
[65] Yin J, Li Y, Chen S C, et al. Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum[J]. Advanced Optical Materials, 2015, 2(5):451-458.
[66] Alias M S, Tangi M, Holguin-Lerma J A, et al. Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices[J]. Journal of Nanophotonics, 2018, 12(4):1-56.
[67] Hagedorn S, Knauer A, Mogilatenko A, et al. AlN growth on nano-patterned sapphire:A route for cost efficient pseudo substrates for deep UV LEDs[J]. Physica Status Solidi A:Applications and Materials Science, 2016, 213(12):3178-3185.
[68] Dong P, Yan J C, Wang J X, et al. 282-nm AlGaNbased deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24):241113.
[69] Dai J P, Liu B, Zhuang Z, et al. Fabrication of AlGaN nanorods with different Al compositions for emission enhancement in UV range[J]. Nanotechnology, 2017, 28(38):385205.
[70] Conroy M, Zubialevich V Z, Li H, et al. Epitaxial lateral overgrowth of AlN on self-assembled patterned nanorods[J]. Journal of Materials Chemistry C, 2015, 3(2):431-437.
[71] Zhang L, Guo Y N, Yan J C, et al. Deep ultraviolet light-emitting diodes with improved performance via nanoporous AlGaN template[J]. Optics Express, 2019, 27(4):4917-4926.
[72] Zhang L, Guo Y N, Yan J C, et al. Deep ultraviolet light-emitting diodes based on a well-ordered AlGaN nanorod array[J]. Photonics Research, 2019, 7(9):B66-B72.
[73] Ruschel J, Glaab J, Beidoun B, et al. Current-induced degradation and lifetime prediction of 310 nm ultraviolet light-emitting diodes[J]. Photonics Research, 2019, 7(7):B36-B40.
[74] Monti D, Meneghini M, De Santi C, et al. Defect-related degradation of AlGaN-based UV-B LEDs[J]. IEEE Transactions on Electron Devices, 2017, 64(1):200-205.
[75] De Santi C, Caria A, Renso N, et al. Evidence of optically induced degradation in gallium nitride optoelectronic devices[J]. Applied Physics Express, 2018, 11(11):111002.
[76] Glaab J, Ruschel J, Kolbe T, et al. Degradation of (In)AlGaN-based UVB LEDs and migration of hydrogen[J]. IEEE Photonics Technology Letters, 2019, 31(7):529-532.
[77] Pinos A, Marcinkevicius S, Yang J, et al. Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy[J]. Applied Physics Letters, 2009, 95(18):181914.
[78] Sawyer S, Rumyantsev S L, Shur M S. Degradation of AlGaN-based ultraviolet light emitting diodes[J]. SolidState Electronics, 2008, 52:968-972.
[79] Yoshikawa A, Hasegawa R, Morishita T, et al. Improve efficiency and long lifetime UVC LEDs with wavelengths between 230 and 237 nm[J]. Applied Physics Express, 2020, 13(2):022001.
[80] Usami S, Mayama N, Toda K, et al. Direct evidence of Mg diffusion through threading mixed dislocations in GaN p-n diodes and its effect on reverse leakage current[J]. Applied Physics Letters, 2019, 114(23):232105.
[81] Monti D, De Santi C, Da Ruos S, et al. High-current stress of UV-B (In)AlGaN-based LEDs:Defect-generation and diffusion processes[J]. IEEE Transactions on Electron Devices, 2019, 66(8):3387-3392.
[82] Moe C G, Reed M L, Garrett G A, et al. Current-induced degradation of high performance deep ultraviolet light emitting diodes[J]. Applied Physics Letters, 2010, 96(21):213512.
[83] Glaab J, Haefke J, Ruschel J, et al. Degradation effects of the active region in UV-C light-emitting diodes[J]. Journal of Applied Physics, 2018, 123(10):104502.
[84] Lobo-Ploch N, Mehnke F, Sulmoni L, et al. Milliwatt power 233 nm AlGaN-based deep UV-LEDs on sapphire substrates[J]. Applied Physics Letters, 2020, 117(11):111102.
[85] Iveland J, Martinelli L, Peretti J, et al. Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection:Identification of the dominant mechanism for efficiency droop[J]. Physical Review Letters, 2013, 110(17):177406.