Exclusive: Innovation and development of the third generation semiconductor

Research progress of the third generation semiconductor radiation detector

  • LIANG Hongwei ,
  • LIAO Chuanwu ,
  • XIA Xiaochuan ,
  • LONG Ze ,
  • GENG Xinlei ,
  • NIU Mengchen ,
  • HAN Zhongyuan
Expand
  • School of Microelectronics, Dalian University of Technology, Dalian 116024, China

Received date: 2021-01-22

  Revised date: 2021-04-13

  Online published: 2021-09-07

Abstract

As representatives of the third generation semiconductor of the wide band gap, the gallium nitride, the silicon carbide and diamond with high breakdown electric field, high saturated electron rate, high heat conductivity and high displacement threshold, high temperature resistance, high radiation resistance, can be applied as the radiation detector in the space detection, the high energy particle physics, and other fields, with important potential applications. The properties of several third-generation semiconductors, the main preparation methods of the radiation detectors and the testing progress for different radiations are addressed emphatically, and the development trend of third-generation semiconductors in the radiation detection is also prospected. It is proposed that the emergence of the third generation semiconductor radiation detectors will promote the research of nuclear science, space exploration, particle and high energy physics, and play an important role in promoting the national core competitiveness.

Cite this article

LIANG Hongwei , LIAO Chuanwu , XIA Xiaochuan , LONG Ze , GENG Xinlei , NIU Mengchen , HAN Zhongyuan . Research progress of the third generation semiconductor radiation detector[J]. Science & Technology Review, 2021 , 39(14) : 69 -82 . DOI: 10.3981/j.issn.1000-7857.2021.14.007

References

[1] 黄海栗. SiC粒子辐照探测器性能及其性能退化的研究[D]. 西安:西安电子科技大学, 2019.
[2] Gerhard L. 半导体辐射探测器[M]. 刘忠立, 译. 北京:国防工业出版社, 2004.
[3] 许平. CVD金刚石膜辐射探测器的研制与性能研究[D]. 衡阳:南华大学, 2020.
[4] Hofstadter R. Remarks on diamond crystal counters[J]. Physical Review, 1948, 73(6):631-631.
[5] Ohl R S. Properties of ionic bombarded silicon[J]. Bell System Technical Journal, 1952, 31(1):104-121.
[6] Friedland S S, Mayer J W, Denney J M. Room temperature operated p-n junctions as charged particle detectors[J]. Review of Scientific Instruments, 1960, 31(1):74-75.
[7] Larsh A E, Gordon G E, Sikkeland T. Use of silicon p-n junction detectors in studies of nuclear reactions induced by heavy ions[J]. Review of Scientific Instruments, 1960, 31(10):1114-1118.
[8] Cedarlund R, Horn A, Scolnick M. Solid-state detector for monitoring 14-Mev neutron production[J]. Nuclear Instruments & Methods, 1961, 13(3):305-308.
[9] Nybakken T W, Vali V. A hybrid preamplifier for cooled lithium ion-drifted semiconductor detectors[J]. Nuclear Instruments and Methods, 1965, 32(1):121-124.
[10] Baertsch R D, Hall R N. Gamma-ray detectors made from high purity germanium[J]. IEEE Transactions on Nuclear Science, 1970, NS17(3):235-240.
[11] 欧阳晓平, 刘林月. 电流型碳化硅探测器[J]. 原子能科学技术, 2019, 53(10):1999-2011.
[12] 靳根, 陈法国, 杨亚鹏, 等. 耐高温耐辐射的碳化硅半导体探测器[J]. 核电子学与探测技术, 2010, 30(7):909-912.
[13] Wang J H, Mulligan P, Brillson L, et al. Review of using gallium nitride for ionizing radiation detection[J]. Applied Physics Reviews, 2015, 2(3):031102.
[14] 王伟. 宽带隙半导体4H-SiC核辐射探测器的设计与仿真[D]. 大连:大连理工大学, 2017.
[15] Round H J. A note on carborundum[J]. Electrical World, 1907, 49:309.
[16] Lely J A. Darstellung von einkristallen von silicium carbid und beherrschung von art und menge der eingebautem verunreingungen[J]. Berichte der Deutschen Keramischen Gesellschaft, 1955, 32:229.
[17] Sciortino S, Hartjes F, Lagomarsino S, et al. Effect of heavy proton and neutron irradiations on epitaxial 4HSiC Schottky diodes[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2005, 552(1/2):138-145.
[18] Badbcock R R S, Schupp F, Sun K. Miniature neutron detectors[R]. Pittsburgh:Westinghouse Electrical Corp. Materials Engineering Report, 1957.
[19] Tikhomirova V A, Fedoseeva O P, Bol'Shakov V V. Silicon-carbide detectors as fission-fragment counters in reactors[J]. Measurement Techniques, 1973, 16(6):900-901.
[20] Ruddy F H, Dulloo A R, Seidel J G, et al. Development of a silicon carbide radiation detector[J]. IEEE Transactions on Nuclear Science, 1998, 45(3):536-541.
[21] Ruddy F H, Seidel J G, Chen H Q, et al. High-resolution alpha-particle spectrometry using 4H silicon carbide semiconductor detectors[J]. IEEE Transactions on Nuclear Science 2006, 53(3):1713-1718.
[22] Zat'ko B, Dubecky F, Sagatova A, et al. High resolution alpha particle detectors based on 4H-SiC epitaxial layer[J]. Journal of Instrumentation, 2015, 10(4):C04009
[23] Torrisi L, Sciuto A, Cannavo A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials 2017, 46(7):4242-4249.
[24] Tudisco S, La Via F, Agodi C, et al. Sicilia-silicon carbide detectors for intense luminosity investigations and applications[J]. Sensors, 2018, 18(7):2289.
[25] Calcagno L, Musumeci P, Cutroneo M, et al. MeV ion beams generated by intense pulsed laser monitored by silicon carbide detectors[J]. Journal of Physics Conference, 2014, 508:012009.
[26] Jimenez-Ramos M C, Lopez J G, Osuna A G, et al. IBIC analysis of SiC detectors developed for fusion applications[J]. Radiation Physics and Chemistry, 2020, 177:109100.
[27] Puglisi D, Bertuccio G. Silicon carbide microstrip radiation detectors[J]. Micromachines, 2019, 10(12):835.
[28] 胡青青. 碳化硅中子探测器的研究[D]. 合肥:国防科学技术大学, 2012.
[29] Liu L Y, Ouyang X, Ruan J L, et al. Performance comparison between SiC and Si neutron detectors in deuterium-tritium fusion neutron irradiation[J]. IEEE Transactions on Nuclear Science, 2019, 66(4):737-741.
[30] Ruddy F H, Dulloo A R, Petrovic B, et al. Fast neutron spectrometry using silicon carbide detectors[C]//11th International Symposium on Reactor Dosimetry. Brussels, Belgium, 18-23 August, 2003:347-355.
[31] Vervisch V, Issa F, Ottaviani L, et al. Nuclear radiation detector based on ion implanted p-n junction in 4H-SiC[C]//3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). Piscataway, NJ:IEEE, 2013:6728002.
[32] Lo Gludice A, Fasolo F, Durisi E, et al. Performances of 4H-SiC Schottky diodes as neutron detectors[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2007, 583(1):177-180.
[33] 李正. 用于高温强辐射场的SiC中子探测器技术研究[D]. 绵阳:中国工程物理研究院, 2019.
[34] Huang H, Tang X, Guo H, et al. Design and spectrum calculation of 4H-SiC thermal neutron detectors using FLUKA and TCAD[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 833:192-198.
[35] Nida S, Tsibizov A, Ziemann T, et al. Silicon carbide Xray beam position monitors for synchrotron applications[J]. Journal of Synchrotron Radiation, 2019, 26:28-35.
[36] Mandal K C, Muzykov P G, Chaudhuri S K, et al. Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8507:85070C-1-5.
[37] Liu L Y, Liu J L, Chen L, et al. Properties of 4H silicon carbide detectors in the radiation detection of 86 MeV oxygen particles[J]. Diamond and Related Materials, 2017, 73:177-181.
[38] 张林, 张义门, 张玉明, 等. 4H-SiC肖特基二极管γ射线探测器的模型与分析[J]. 强激光与粒子束, 2008, 20(5):854-858.
[39] 蒋勇, 吴健, 韦建军, 等. 基于4H-SiC肖特基二极管的中子探测器[J]. 原子能科学技术2013, 2013(4):664-668.
[40] 陈雨, 范晓强, 蒋勇, 等. 4H-SiC肖特基二极管α探测器研究[J]. 核电子学与探测技术2013, 33(1):57-61.
[41] 吴健, 蒋勇, 甘雷, 等. 基于4H-SiC的高能量分辨率α粒子探测器[J]. 强激光与粒子束2015, 27(1):014004-1.
[42] 蒋勇. 基于PIPS的数字化6Li夹心谱仪中子能谱测量技术研究[D]. 绵阳:中国工程物理研究院, 2019.
[43] Jiang Y, Wu J, Li Z, et al. A neutron beam monitor based on silicon carbide semiconductor coated with 6LiF converter[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2019, 921:14-17.
[44] Dong P, Cui Y X, Chen Z, et al. Effects of neutron irradiation on the static and switching characteristics of high-voltage 4H-SiC p-type gate turn-off thyristors[J]. IEEE Transactions on Electron Devices 2019, 66(9):3917-3922.
[45] Yang J Q, Li H Y, Dong S L, et al. Pinning effect on Fermi level in 4H-SiC Schottky diode caused by 40-MeV Si ions[J]. IEEE Transactions on Nuclear Science, 2019, 66(9):2042-2047.
[46] 韩冲, 崔兴柱, 梁晓华, 等. 辐照后4H-SiC带电粒子探测器的特性研究[J]. 核技术, 2019, 42(5):51-56.
[47] Kramberger G, Cindro V, Flores D, et al. Timing performance of small cell 3D silicon detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 934:26-32.
[48] Kandlakunta P, Tan C, Smith N, et al. Silicon carbide detectors for high flux neutron monitoring at near-core locations[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2020, 953:163110.
[49] Newbury D E, Ritchie N W M. Quantitative electron-excited X-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II[J]. Microscopy and Microanalysis, 2015, 21(5):1327-1340.
[50] Mavroidis C. Electron transport in GaN expitaxial layers[D]. London:University College London, 2003.
[51] Liu L, Edgar J H. Substrates for gallium nitride epitaxy[J]. Materials Science and Engineering, 2002, 37:61-127.
[52] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5):353-355.
[53] Lui H F, Fong W K, Surya C. Characteristics of MBEgrown GaN detectors on double buffer layers under high-power ultraviolet optical irradiation[J]. IEEE Transactions on Electron Devices, 2007, 54(4):671-676.
[54] Zhang Y M, Wang J F, Cai D M, et al. Growth and doping of bulk GaN by hydride vapor phase epitaxy[J]. Chinese Physics B, 2020, 29(2):14.
[55] Osinsky V, Sukhoviy N, Masol I, et al. MOCVD integration technology of enestor through grafene-like III-Nitride, nanocarbides and InGaN/GaN QDs[C]//2019 IEEE 39th International Conference on Electronics and Nanotechnology (Elnano). Piscataway, NJ:IEEE, 2019:335-339.
[56] Xu K, Wang J F, Ren G Q. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6):16.
[57] Jain S C, Willander M, Narayan J, et al. III-nitrides:Growth, characterization, and properties[J]. Journal of Applied Physics, 2000, 87(3):965-1006.
[58] Nakamura S, Mukai T, Senoh M. Si-and Ge-doped gan films grown with GaN buffer layers[J]. Japanese Journal of Applied Physics, 1992, 31:2883-2888.
[59] Wang H, Chen A B. Calculation of shallow donor levels in GaN[J]. Journal of Applied Physics, 2000, 87(11):7859-7863.
[60] Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GAN films[J]. Japanese Journal of Applied Physics, 1992, 31(2B):L139-L142.
[61] Boguslawski P, Bernholc J. Doping properties of C, Si, and Ge impurities in GaN and AlN[J]. Physical Review B, 1997, 56(15):9496-9505.
[62] Wong Y Y, Chang E Y, Yang T H, et al. The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE[J]. Journal of The Electrochemical Society, 2010, 157(7):H746-H749.
[63] Hsu J W P, Manfra M J, Chu S N G, et al. Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 78(25):3980-3982.
[64] Chen C, Meng F C, Song J. Effects of Mg and Al doping on dislocation slips in GaN[J]. Journal of Applied Physics, 2016, 119(6):064302.
[65] Vaitkus J, Cunningham W, Gaubas E, et al. Semi-insulating GaN and its evaluation for α particle detection[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509(1/2/3):60-64.
[66] Vaitkus J, Gaubas E, Shirahama T, et al. Space charge effects, carrier capture transient behaviour and α particle detection in semi-insulating GaN[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 514(1/2/3):141-145.
[67] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Alpha particle detection with GaN Schottky diodes[J]. Journal of Applied Physics, 2009, 106(10):103708.
[68] Wang G, Fu K, Yao C S, et al. GaN-based PIN alpha particle detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 663(1):10-13.
[69] Zhu Z, Zhang H, Liang H, et al. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 893:39-42.
[70] Geng X L, Xia X C, Huang H L, et al. Simulation of GaN micro-structured neutron detectors for improving electrical properties[J]. Chinese Physics B, 2020, 29(2):467-473.
[71] Grant J, Cunningham W, Blue A, et al. Wide bandgap semiconductor detectors for harsh radiation environments[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 546(1/2):213-217.
[72] Xu Q, Mulligan P, Wang J, et al. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 849:11-15.
[73] Sandupatla A, Arulkumaran S, Ranjan K, et al. Low voltage high-energy alpha-particle detectors by GaN-onGaN Schottky diodes with record-high charge collection efficiency[J]. Sensors, 2019, 19(23):5107.
[74] Lee I H, Polyakov A Y, Smirnov N B, et al. Electrical properties and radiation detector performance of freestanding bulk n-GaN[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2012, 30(2):021205.
[75] Duboz J Y, Laügt M, Schenk D, et al. GaN for x-ray detection[J]. Applied Physics Letters, 2008, 92(26):263501.
[76] Duboz J Y, Beaumont B, Reverchon J L, et al. Anomalous photoresponse of GaN x-ray Schottky detectors[J]. Journal of Applied Physics, 2009, 105(11):114512.
[77] Duboz J Y, Frayssinet E, Chenot S, et al. X-ray detectors based on GaN Schottky diodes[J]. Applied Physics Letters, 2010, 97(16):163504.
[78] Yao C S, Fu K, Wang G, et al. GaN-based p-i-n X-ray detection[J]. physica status solidi, 2012, 209(1):204-206.
[79] Zhou L, Lu X, Wu J, et al. Self-powered fast-response X-ray detectors based on vertical GaN p-n diodes[J]. IEEE Electron Device Letters, 2019, 40(7):1044-1047.
[80] Jinghui W, Kandlakunta P, Kent T F, et al. A gadolinium doped superlattice GaN Schottky diode for neutron detection[J]. Transactions of the American Nuclear Society, 2011, 104:209-10.
[81] Zhu Z F, Zou J J, Tang B, et al. Effects of 10 MeV electron irradiation on the characteristics of gallium-nitridebased pin alpha-particle detectors[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2018, 902:9-13.
[82] 成绍恒. CVD金刚石单晶生长及金刚石晶体管的研究[D]. 吉林:吉林大学, 2012.
[83] Tartoni N, Angelone M, Pillon M, et al. X-ray detection by using CVD single crystal diamond detector[J]. IEEE Transactions on Nuclear Science, 2009, 56(3):849-852.
[84] Zhang M L, Xia Y B, Wang L J, et al. Effects of the grain size of CVD diamond films on the detector performance[J]. Journal of Materials Science, 2005, 40(19):5269-5272.
[85] 阳硕, 满卫东, 赵彦君, 等. MPCVD法合成单晶金刚石的研究及应用进展[J]. 真空与低温, 2015, 21(3):131-138.
[86] Gudden B, Pohl R. Das quantenäquivalent bei der lichtelektrischen Leitung[J]. Zeitschrift für Physik, 1923, 17(1):331-346.
[87] Wooldridge D E, Ahearn A J, Burton J A. Conductivity pulses induced in diamond by alpha-particles[J]. Physical Review, 1947, 71(12):913-913.
[88] Friedman H, Birks L S, Gauvin H P. Ultraviolet transmission of counting diamonds[J]. Physical Review, 1948, 73(2):186-187.
[89] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds[J]. Nature, 1955, 176(4471):51-55.
[90] Pillon M, Angelone M, Krasilnikov A V. 14 MeV neutron-spectra measurements with 4-percent energy resolution using a type-IIa diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1995, 101(4):473-483.
[91] Berdermann E, Blasche K, Moritz P, et al. First applications of CVD-diamond detectors in heavy-ion experiments[J]. Nuclear Physics B:Proceedings Supplements, 1999, 78(1):533-539.
[92] Frégeau M O, Oberstedt S, Brys T, et al. First use of single-crystal diamonds as fission-fragment detector[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 791:58-64.
[93] Wodniak I, Drozdowicz K, Dankowski J, et al. CVD diamond detectors for fast alpha particles escaping from the tokamak D-T plasma[J]. Nukleonika, 2011, 56(2):143-147.
[94] Krasilnikov A V, Azizov E A, Roquemore A L, et al. TFTR natural diamond detectors based D-T neutron spectrom physical defects and degradation mechanisms of GaN-based electronic devices etry system[J]. Review of Scientific Instruments, 1997, 68(1):553-556.
[95] Giacomelli L, Nocente M, Rebai M, et al. Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors[J]. Review of Scientific Instruments, 2016, 87(11):11D822.
[96] 何君, 李明月. 超宽禁带AlN材料及其器件应用的现状和发展趋势[J]. 半导体技术, 2019, 44(4):241-250.
[97] Maity A, Grenadier S J, Li J, et al. High efficiency hexagonal boron nitride neutron detectors with 1cm2 detection areas[J]. Applied Physics Letters, 2020, 116(14):142102.
Outlines

/