[1] 黄海栗. SiC粒子辐照探测器性能及其性能退化的研究[D]. 西安:西安电子科技大学, 2019.
[2] Gerhard L. 半导体辐射探测器[M]. 刘忠立, 译. 北京:国防工业出版社, 2004.
[3] 许平. CVD金刚石膜辐射探测器的研制与性能研究[D]. 衡阳:南华大学, 2020.
[4] Hofstadter R. Remarks on diamond crystal counters[J]. Physical Review, 1948, 73(6):631-631.
[5] Ohl R S. Properties of ionic bombarded silicon[J]. Bell System Technical Journal, 1952, 31(1):104-121.
[6] Friedland S S, Mayer J W, Denney J M. Room temperature operated p-n junctions as charged particle detectors[J]. Review of Scientific Instruments, 1960, 31(1):74-75.
[7] Larsh A E, Gordon G E, Sikkeland T. Use of silicon p-n junction detectors in studies of nuclear reactions induced by heavy ions[J]. Review of Scientific Instruments, 1960, 31(10):1114-1118.
[8] Cedarlund R, Horn A, Scolnick M. Solid-state detector for monitoring 14-Mev neutron production[J]. Nuclear Instruments & Methods, 1961, 13(3):305-308.
[9] Nybakken T W, Vali V. A hybrid preamplifier for cooled lithium ion-drifted semiconductor detectors[J]. Nuclear Instruments and Methods, 1965, 32(1):121-124.
[10] Baertsch R D, Hall R N. Gamma-ray detectors made from high purity germanium[J]. IEEE Transactions on Nuclear Science, 1970, NS17(3):235-240.
[11] 欧阳晓平, 刘林月. 电流型碳化硅探测器[J]. 原子能科学技术, 2019, 53(10):1999-2011.
[12] 靳根, 陈法国, 杨亚鹏, 等. 耐高温耐辐射的碳化硅半导体探测器[J]. 核电子学与探测技术, 2010, 30(7):909-912.
[13] Wang J H, Mulligan P, Brillson L, et al. Review of using gallium nitride for ionizing radiation detection[J]. Applied Physics Reviews, 2015, 2(3):031102.
[14] 王伟. 宽带隙半导体4H-SiC核辐射探测器的设计与仿真[D]. 大连:大连理工大学, 2017.
[15] Round H J. A note on carborundum[J]. Electrical World, 1907, 49:309.
[16] Lely J A. Darstellung von einkristallen von silicium carbid und beherrschung von art und menge der eingebautem verunreingungen[J]. Berichte der Deutschen Keramischen Gesellschaft, 1955, 32:229.
[17] Sciortino S, Hartjes F, Lagomarsino S, et al. Effect of heavy proton and neutron irradiations on epitaxial 4HSiC Schottky diodes[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2005, 552(1/2):138-145.
[18] Badbcock R R S, Schupp F, Sun K. Miniature neutron detectors[R]. Pittsburgh:Westinghouse Electrical Corp. Materials Engineering Report, 1957.
[19] Tikhomirova V A, Fedoseeva O P, Bol'Shakov V V. Silicon-carbide detectors as fission-fragment counters in reactors[J]. Measurement Techniques, 1973, 16(6):900-901.
[20] Ruddy F H, Dulloo A R, Seidel J G, et al. Development of a silicon carbide radiation detector[J]. IEEE Transactions on Nuclear Science, 1998, 45(3):536-541.
[21] Ruddy F H, Seidel J G, Chen H Q, et al. High-resolution alpha-particle spectrometry using 4H silicon carbide semiconductor detectors[J]. IEEE Transactions on Nuclear Science 2006, 53(3):1713-1718.
[22] Zat'ko B, Dubecky F, Sagatova A, et al. High resolution alpha particle detectors based on 4H-SiC epitaxial layer[J]. Journal of Instrumentation, 2015, 10(4):C04009
[23] Torrisi L, Sciuto A, Cannavo A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials 2017, 46(7):4242-4249.
[24] Tudisco S, La Via F, Agodi C, et al. Sicilia-silicon carbide detectors for intense luminosity investigations and applications[J]. Sensors, 2018, 18(7):2289.
[25] Calcagno L, Musumeci P, Cutroneo M, et al. MeV ion beams generated by intense pulsed laser monitored by silicon carbide detectors[J]. Journal of Physics Conference, 2014, 508:012009.
[26] Jimenez-Ramos M C, Lopez J G, Osuna A G, et al. IBIC analysis of SiC detectors developed for fusion applications[J]. Radiation Physics and Chemistry, 2020, 177:109100.
[27] Puglisi D, Bertuccio G. Silicon carbide microstrip radiation detectors[J]. Micromachines, 2019, 10(12):835.
[28] 胡青青. 碳化硅中子探测器的研究[D]. 合肥:国防科学技术大学, 2012.
[29] Liu L Y, Ouyang X, Ruan J L, et al. Performance comparison between SiC and Si neutron detectors in deuterium-tritium fusion neutron irradiation[J]. IEEE Transactions on Nuclear Science, 2019, 66(4):737-741.
[30] Ruddy F H, Dulloo A R, Petrovic B, et al. Fast neutron spectrometry using silicon carbide detectors[C]//11th International Symposium on Reactor Dosimetry. Brussels, Belgium, 18-23 August, 2003:347-355.
[31] Vervisch V, Issa F, Ottaviani L, et al. Nuclear radiation detector based on ion implanted p-n junction in 4H-SiC[C]//3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). Piscataway, NJ:IEEE, 2013:6728002.
[32] Lo Gludice A, Fasolo F, Durisi E, et al. Performances of 4H-SiC Schottky diodes as neutron detectors[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2007, 583(1):177-180.
[33] 李正. 用于高温强辐射场的SiC中子探测器技术研究[D]. 绵阳:中国工程物理研究院, 2019.
[34] Huang H, Tang X, Guo H, et al. Design and spectrum calculation of 4H-SiC thermal neutron detectors using FLUKA and TCAD[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 833:192-198.
[35] Nida S, Tsibizov A, Ziemann T, et al. Silicon carbide Xray beam position monitors for synchrotron applications[J]. Journal of Synchrotron Radiation, 2019, 26:28-35.
[36] Mandal K C, Muzykov P G, Chaudhuri S K, et al. Assessment of 4H-SiC epitaxial layers and high resistivity bulk crystals for radiation detectors[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8507:85070C-1-5.
[37] Liu L Y, Liu J L, Chen L, et al. Properties of 4H silicon carbide detectors in the radiation detection of 86 MeV oxygen particles[J]. Diamond and Related Materials, 2017, 73:177-181.
[38] 张林, 张义门, 张玉明, 等. 4H-SiC肖特基二极管γ射线探测器的模型与分析[J]. 强激光与粒子束, 2008, 20(5):854-858.
[39] 蒋勇, 吴健, 韦建军, 等. 基于4H-SiC肖特基二极管的中子探测器[J]. 原子能科学技术2013, 2013(4):664-668.
[40] 陈雨, 范晓强, 蒋勇, 等. 4H-SiC肖特基二极管α探测器研究[J]. 核电子学与探测技术2013, 33(1):57-61.
[41] 吴健, 蒋勇, 甘雷, 等. 基于4H-SiC的高能量分辨率α粒子探测器[J]. 强激光与粒子束2015, 27(1):014004-1.
[42] 蒋勇. 基于PIPS的数字化6Li夹心谱仪中子能谱测量技术研究[D]. 绵阳:中国工程物理研究院, 2019.
[43] Jiang Y, Wu J, Li Z, et al. A neutron beam monitor based on silicon carbide semiconductor coated with 6LiF converter[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2019, 921:14-17.
[44] Dong P, Cui Y X, Chen Z, et al. Effects of neutron irradiation on the static and switching characteristics of high-voltage 4H-SiC p-type gate turn-off thyristors[J]. IEEE Transactions on Electron Devices 2019, 66(9):3917-3922.
[45] Yang J Q, Li H Y, Dong S L, et al. Pinning effect on Fermi level in 4H-SiC Schottky diode caused by 40-MeV Si ions[J]. IEEE Transactions on Nuclear Science, 2019, 66(9):2042-2047.
[46] 韩冲, 崔兴柱, 梁晓华, 等. 辐照后4H-SiC带电粒子探测器的特性研究[J]. 核技术, 2019, 42(5):51-56.
[47] Kramberger G, Cindro V, Flores D, et al. Timing performance of small cell 3D silicon detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 934:26-32.
[48] Kandlakunta P, Tan C, Smith N, et al. Silicon carbide detectors for high flux neutron monitoring at near-core locations[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2020, 953:163110.
[49] Newbury D E, Ritchie N W M. Quantitative electron-excited X-ray microanalysis of borides, carbides, nitrides, oxides, and fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II[J]. Microscopy and Microanalysis, 2015, 21(5):1327-1340.
[50] Mavroidis C. Electron transport in GaN expitaxial layers[D]. London:University College London, 2003.
[51] Liu L, Edgar J H. Substrates for gallium nitride epitaxy[J]. Materials Science and Engineering, 2002, 37:61-127.
[52] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5):353-355.
[53] Lui H F, Fong W K, Surya C. Characteristics of MBEgrown GaN detectors on double buffer layers under high-power ultraviolet optical irradiation[J]. IEEE Transactions on Electron Devices, 2007, 54(4):671-676.
[54] Zhang Y M, Wang J F, Cai D M, et al. Growth and doping of bulk GaN by hydride vapor phase epitaxy[J]. Chinese Physics B, 2020, 29(2):14.
[55] Osinsky V, Sukhoviy N, Masol I, et al. MOCVD integration technology of enestor through grafene-like III-Nitride, nanocarbides and InGaN/GaN QDs[C]//2019 IEEE 39th International Conference on Electronics and Nanotechnology (Elnano). Piscataway, NJ:IEEE, 2019:335-339.
[56] Xu K, Wang J F, Ren G Q. Progress in bulk GaN growth[J]. Chinese Physics B, 2015, 24(6):16.
[57] Jain S C, Willander M, Narayan J, et al. III-nitrides:Growth, characterization, and properties[J]. Journal of Applied Physics, 2000, 87(3):965-1006.
[58] Nakamura S, Mukai T, Senoh M. Si-and Ge-doped gan films grown with GaN buffer layers[J]. Japanese Journal of Applied Physics, 1992, 31:2883-2888.
[59] Wang H, Chen A B. Calculation of shallow donor levels in GaN[J]. Journal of Applied Physics, 2000, 87(11):7859-7863.
[60] Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on p-type Mg-doped GAN films[J]. Japanese Journal of Applied Physics, 1992, 31(2B):L139-L142.
[61] Boguslawski P, Bernholc J. Doping properties of C, Si, and Ge impurities in GaN and AlN[J]. Physical Review B, 1997, 56(15):9496-9505.
[62] Wong Y Y, Chang E Y, Yang T H, et al. The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE[J]. Journal of The Electrochemical Society, 2010, 157(7):H746-H749.
[63] Hsu J W P, Manfra M J, Chu S N G, et al. Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 78(25):3980-3982.
[64] Chen C, Meng F C, Song J. Effects of Mg and Al doping on dislocation slips in GaN[J]. Journal of Applied Physics, 2016, 119(6):064302.
[65] Vaitkus J, Cunningham W, Gaubas E, et al. Semi-insulating GaN and its evaluation for α particle detection[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509(1/2/3):60-64.
[66] Vaitkus J, Gaubas E, Shirahama T, et al. Space charge effects, carrier capture transient behaviour and α particle detection in semi-insulating GaN[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 514(1/2/3):141-145.
[67] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Alpha particle detection with GaN Schottky diodes[J]. Journal of Applied Physics, 2009, 106(10):103708.
[68] Wang G, Fu K, Yao C S, et al. GaN-based PIN alpha particle detectors[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 663(1):10-13.
[69] Zhu Z, Zhang H, Liang H, et al. High-temperature performance of gallium-nitride-based pin alpha-particle detectors grown on sapphire substrates[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 893:39-42.
[70] Geng X L, Xia X C, Huang H L, et al. Simulation of GaN micro-structured neutron detectors for improving electrical properties[J]. Chinese Physics B, 2020, 29(2):467-473.
[71] Grant J, Cunningham W, Blue A, et al. Wide bandgap semiconductor detectors for harsh radiation environments[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 546(1/2):213-217.
[72] Xu Q, Mulligan P, Wang J, et al. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution[J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 849:11-15.
[73] Sandupatla A, Arulkumaran S, Ranjan K, et al. Low voltage high-energy alpha-particle detectors by GaN-onGaN Schottky diodes with record-high charge collection efficiency[J]. Sensors, 2019, 19(23):5107.
[74] Lee I H, Polyakov A Y, Smirnov N B, et al. Electrical properties and radiation detector performance of freestanding bulk n-GaN[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics:Materials, Processing, Measurement, and Phenomena, 2012, 30(2):021205.
[75] Duboz J Y, Laügt M, Schenk D, et al. GaN for x-ray detection[J]. Applied Physics Letters, 2008, 92(26):263501.
[76] Duboz J Y, Beaumont B, Reverchon J L, et al. Anomalous photoresponse of GaN x-ray Schottky detectors[J]. Journal of Applied Physics, 2009, 105(11):114512.
[77] Duboz J Y, Frayssinet E, Chenot S, et al. X-ray detectors based on GaN Schottky diodes[J]. Applied Physics Letters, 2010, 97(16):163504.
[78] Yao C S, Fu K, Wang G, et al. GaN-based p-i-n X-ray detection[J]. physica status solidi, 2012, 209(1):204-206.
[79] Zhou L, Lu X, Wu J, et al. Self-powered fast-response X-ray detectors based on vertical GaN p-n diodes[J]. IEEE Electron Device Letters, 2019, 40(7):1044-1047.
[80] Jinghui W, Kandlakunta P, Kent T F, et al. A gadolinium doped superlattice GaN Schottky diode for neutron detection[J]. Transactions of the American Nuclear Society, 2011, 104:209-10.
[81] Zhu Z F, Zou J J, Tang B, et al. Effects of 10 MeV electron irradiation on the characteristics of gallium-nitridebased pin alpha-particle detectors[J]. Nuclear Instruments & Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment, 2018, 902:9-13.
[82] 成绍恒. CVD金刚石单晶生长及金刚石晶体管的研究[D]. 吉林:吉林大学, 2012.
[83] Tartoni N, Angelone M, Pillon M, et al. X-ray detection by using CVD single crystal diamond detector[J]. IEEE Transactions on Nuclear Science, 2009, 56(3):849-852.
[84] Zhang M L, Xia Y B, Wang L J, et al. Effects of the grain size of CVD diamond films on the detector performance[J]. Journal of Materials Science, 2005, 40(19):5269-5272.
[85] 阳硕, 满卫东, 赵彦君, 等. MPCVD法合成单晶金刚石的研究及应用进展[J]. 真空与低温, 2015, 21(3):131-138.
[86] Gudden B, Pohl R. Das quantenäquivalent bei der lichtelektrischen Leitung[J]. Zeitschrift für Physik, 1923, 17(1):331-346.
[87] Wooldridge D E, Ahearn A J, Burton J A. Conductivity pulses induced in diamond by alpha-particles[J]. Physical Review, 1947, 71(12):913-913.
[88] Friedman H, Birks L S, Gauvin H P. Ultraviolet transmission of counting diamonds[J]. Physical Review, 1948, 73(2):186-187.
[89] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds[J]. Nature, 1955, 176(4471):51-55.
[90] Pillon M, Angelone M, Krasilnikov A V. 14 MeV neutron-spectra measurements with 4-percent energy resolution using a type-IIa diamond detector[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1995, 101(4):473-483.
[91] Berdermann E, Blasche K, Moritz P, et al. First applications of CVD-diamond detectors in heavy-ion experiments[J]. Nuclear Physics B:Proceedings Supplements, 1999, 78(1):533-539.
[92] Frégeau M O, Oberstedt S, Brys T, et al. First use of single-crystal diamonds as fission-fragment detector[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 791:58-64.
[93] Wodniak I, Drozdowicz K, Dankowski J, et al. CVD diamond detectors for fast alpha particles escaping from the tokamak D-T plasma[J]. Nukleonika, 2011, 56(2):143-147.
[94] Krasilnikov A V, Azizov E A, Roquemore A L, et al. TFTR natural diamond detectors based D-T neutron spectrom physical defects and degradation mechanisms of GaN-based electronic devices etry system[J]. Review of Scientific Instruments, 1997, 68(1):553-556.
[95] Giacomelli L, Nocente M, Rebai M, et al. Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors[J]. Review of Scientific Instruments, 2016, 87(11):11D822.
[96] 何君, 李明月. 超宽禁带AlN材料及其器件应用的现状和发展趋势[J]. 半导体技术, 2019, 44(4):241-250.
[97] Maity A, Grenadier S J, Li J, et al. High efficiency hexagonal boron nitride neutron detectors with 1cm2 detection areas[J]. Applied Physics Letters, 2020, 116(14):142102.