[1] Gultepe I, Tardif R, Michaelides S C, et al. Fog research:A review of past achievements and future perspectives[M]. Fog and Boundary Layer Clouds:Fog Visibility and Forecasting, Birkhäuser-Verlag:Pure and Applied Geophysics, 2008.
[2] Hunt G E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths[J]. Quarterly Journal of the Royal Meteorological Society, 1973, 99(420):346-369.
[3] Eyre J R, Brownscombe J L, Allan R J. Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery[J]. Meteorological Magazine, 1984, 113(1346):266-271.
[4] Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J]. Weather and Forecasting, 1995, 10(3):606-619.
[5] Cermak J, Bendix J. Dynamical nighttime fog/low stratus detection based on meteosat SEVIRI data:A feasibility study[M]. Birkhäuser-Verlag:Pure and Applied Geophysics, 2007.
[6] Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES893.9-mum data[J]. Weather and Forecasting, 1997, 12(3):664-677.
[7] Gao S, Wei W, Zhu L, et al. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data[J]. Acta Oceanologica Sinica, 2009, 28(2):23-35.
[8] Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection-a feasibility study[J]. Atmospheric Research, 2015, 151:212-223.
[9] Ma H, Wu X, Zou B, et al. Algorithm for daytime radiation fog detection based on MODIS/TERRA data over land[J]. Journal of Applied Remote Sensing, 2012, 6(1):3589.
[10] Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-a feasibilitystudy[J]. Weather and Forecasting, 2005, 20(6):989-1005.
[11] Cermak J, Bendix J. Detecting ground fog from space-a microphysics-based approach[J]. International Journal of Remote Sensing, 2011, 32(12):3345-3371.
[12] Cermak J, Bendix J. A novel approach to fog/low stratus detection using Meteosat 8 data[J]. Atmospheric Research, 2008, 87(3-4):279-292.
[13] 郝增周, 潘德炉, 龚芳, 等. 海雾的遥感光学辐射特性[J]. 光学学报, 2008, 28(12):2420-2426.
[14] Hao Z, Pan D, Gong F, et al. Sea fog characteristics based on MODIS data and streamer model[C]//Remote Sensing of Clouds and the Atmosphere XIV. Berlin, Germany:International Society for Optics and Photonics, 2009.
[15] Wu X, Li S. Automatic sea fog detection over Chinese adjacent oceans using Terra/MODIS data[J]. International Journal of Remote Sensing, 2014, 35(21-22):7430-7457.
[16] Ahn M H, Sohn E H, Hwang B J. A new algorithm for sea fog/stratus detection using GMS-5 IR data[J]. Advances in Atmospheric Sciences, 2003, 20(6):899-913.
[17] Cermak J. SOFOS-a new satellite-based operational fog observation scheme[M]. Philipps-Universität Marburg, 2006.
[18] Pavolonis M. GOES-R Advanced baseline imager (ABI) algorithm theoretical basis document for low cloud and fog[Z]. 2010
[19] Egli S, Thies B, Drnner J, et al. A 10 year fog and low stratus climatology for Europe based on Meteosat second generation data[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 143(702):530-541.
[20] 吴晓京, 李三妹, 廖蜜, 等. 基于20年卫星遥感资料的黄海,渤海海雾分布季节特征分析[J]. 海洋学报, 2015, 37(1):63-72.
[21] 吴晓京, 陈云浩, 李三妹. 应用MODIS数据对新疆北部大雾地面能见度和微物理参数的反演[J]. 遥感学报, 2005, 9(6):688-696.
[22] Yi L, Thies B, Zhang S, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection[J]. Remote Sensing, 2016, 8(1):8.
[23] Pagowski M, Gultepe I, King P. Analysis and modeling of an extremely dense fog event in Southern Ontario[J]. Journal of Applied Meteorology, 2004, 43(1):3-16.
[24] Van d V I R, Steeneveld G J, Wichers Schreur B G J, et al. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions[J]. Monthly Weather Review, 2010, 138(11):4237-4253.
[25] 高山红, 齐伊玲, 张守宝, 等. 利用循环3DVAR改进黄海海雾数值模拟初始场Ⅰ:WRF数值试验[J]. 中国海洋大学学报(自然科学版), 2010(10):1-9.
[26] 吴晓京, 朱江, 王曦, 等. 风云三号微波观测资料的海雾同化模拟[J]. 大气科学, 2017, 41(3):421-436.
[27] Müller M D, Schmutz C, Parlow E. A one-dimensional ensemble forecast and assimilation system for fog prediction[J]. Pure & Applied Geophysics, 2007, 164(6-7):1241-1264.
[28] Korea Meteorological Administration. Satellite images[EB/OL]. (2015-03-31)[2015-03-31]. http://web.kma.go.kr/chn/weather/images/satellite.jsp?data=fog&area=k&tm=2015.03.31&tmHour=09%3A00.
[29] 郑永光, 张小玲, 周庆亮, 等. 强对流天气短时临近预报业务技术进展与挑战[J]. 气象, 2010(7):33-42.
[30] 许林之. 海洋观测在海洋灾害预报中的作用[J]. 海洋技术学报, 1994, 13(1):60-63.
[31] 尹尽勇, 徐晶, 曹越男,等. 我国海洋气象预报业务现状与发展[J]. 气象科技进展, 2012, 2(6):17-26.
[32] Anagnostou E N, Kummerow C. Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(3):570-575.
[33] Burns B A, Wu X, Diak G R. Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels[J]. IEEE Transactions on Geoence & Remote Sensing, 1997, 35(6):1429-1437.
[34] Chesters D, Uccellini L W, Mostek A. VISSR atmospheric sounder/VAS/simulation experiment for a severe storm environment[J]. Monthly Weather Review, 1982, 110(3):198-216.
[35] Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D10):ACL 6-1-ACL 6-12.
[36] Liu G, Curry J A, Sheu R S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D7):13, 811-813, 826.
[37] Anagnostou E N, Kummerow C. Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(3):570-575.
[38] Hong Y, Kummerow W S. Olson. Separation of convective and stratiform precipitation using microwave brightness temperature[J]. Journal of Applied Meteorology, 1999, 38(8):1195-1213.
[39] Burns B A, Wu X, Diak G R. Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997, 35(6):1429-1437.
[40] Hong G, Heygster G, Miao J, et al. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements[J]. Journal of Geophysical Research Atmospheres, 2005, 110(5):D05205,1-D05205,15.
[41] Mapes B E, Houze R A. Cloud clusters and superclusters over the oceanic warm pool[J]. Monthly Weather Review, 1993, 121(5), 1398-1416.
[42] Weaver J, Purdom J F W, Smith S B. Comments on "Nowcasts of Thunderstorm Initiation and Evolution"[J]. Weather & Forecasting, 2009, 9(4):658-662.
[43] Chesters D, Uccellini L W, Mostek A. VISSR atmospheric sounder/VAS/simulation experiment for a severe storm environment[J]. Monthly Weather Review, 1982, 110(3):198-216.
[44] Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12m data[J]. Journal of Applied Meteorology, 1994, 33(2):212-229.
[45] Menzel W P, Holt F C. Application of GOES8/9 soundings to weather forecasting and nowcasting[J]. Bulletin of the American Meteorological Society, 1998, 79(10):2059-2078.
[46] Schmit T J, Feltz W F, Menzel W P, et al. Validation and use of GOES sounder moisture information[J], Weather and Forecasting, 2002, 17(1), 139-154.
[47] Koenig M, Coning E D. The MSG global instability indices product and its use as a nowcasting tool[J]. Weather & Forecasting, 2009, 24(1):272-285.
[48] Mecikalski J R, Bedka K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery[J]. Monthly Weather Review, 2006, 134(1):49-78.
[49] Mecikalski J R, Bedka K M, Paech S J, et al. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation[J]. Monthly Weather Review, 2010, 136(12):4899-4914.
[50] Siewert C W, Koenig M, Mecikalski J R. Application of Meteosat second generation data towards improving the nowcasting of convective initiation[J]. Meteorological Applications, 2010, 17(4):442-451.
[51] Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12-μm data[J]. Journal of Applied Meteorology, 1994, 33(2):212-229.
[52] Weaver J, Purdom J F W, Smith S B. Comments on "Nowcasts of Thunderstorm Initiation and Evolution"[J]. Weather & Forecasting, 2009, 9(4):658-662.
[53] Institute for Meteorological Satellite Studies Space Science and Engineering Center (SSEC), University of Wisconsin-Madison. Meteosat Second Generation (MSG) images[EB/OL]. (2013-10-03)[2013-10-03]. http://cimss.ssec.wisc.edu/snaap/cops/quicklooks.php.
[54] Yu R, Xu Y, Zhou T, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophysical Research Letters, 2007, 34(13):L13703,1-l13703,4.
[55] Yu R, Zhou T, Xiong A, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 2007, 34(1):223-234.
[56] 傅丙珊. 风云2号卫星云图在短时强对流天气预报中的应用[J]. 气象科技, 2004, 32(5):363-366.
[57] 许健民, 方宗义.《卫星水汽图像和位势涡度场在天气分析和预报中的应用》 导读[J]. 气象, 2008, 34(5):3-8.
[58] O'Reilly J E, Stéphane M, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research Oceans, 1998, 103(C11):24937-24953.
[59] O'Reilly J, Werdell P. Chlorophyll algorithms for ocean color sensors-OC4, Oc5& OC6[J]. Remote Sensing of Environment, 2019, 229:32-47.
[60] Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4):429-440.
[61] Maritorena S, d'Andon O H F. Merged satellite ocean color data products using a bio-optical model:Characteristics, benefits and issues[J]. Remote Sensing of Environment, 2010(114):1791-1804.
[62] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Chlorophyll products[EB/OL]. (2018-06-01)[2018-05-31]. http://oceancolor.gsfc.nasa.gov/.
[63] Morel A, Antoine D, Babin M, et al. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program):The impact of natural variations in photosynthetic parameters on model predictive skill[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1996, 43(8):1273-1304
[64] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Euphotic zone depth products[EB/OL]. 2018-06-01[2018-06-10]. http://oceancolor.gsfc.nasa.gov/.
[65] 陈晶晶, 商少平, 商少凌. 台湾海峡真光层深度半分析算法遥感反演的真实性检验[J]. 厦门大学学报(自然版), 2007, 46(S1):12-17.
[66] 唐世林, 陈楚群, 詹海刚, 等. 南海真光层深度的遥感反演[J]. 热带海洋学报, 2007(1):9-15.
[67] Guo L Z, Xuan Z Y, Zhong J X, et al. Progress on suspended sediment concentration remote sensing in nearshore case 2 waters[J]. Progress in Geophysics, 2006, 21(1):321-326.
[68] Miller R L, Brent A M. Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters[J].Remote Sensing of Environment, 2004, 93(1-2):259-266.
[69] 王繁, 凌在盈, 周斌, 等. MODIS监测河口水体悬浮泥沙质量浓度的短期变异[J]. 浙江大学学报, 2009, 43(4):755-759.
[70] National Oceanic and Atmospheric Administration (NOAA). Concentrations of total suspended matter products[EB/OL]. (2015-01-31)[2015-01-28]. http://coastwatch.chesapeakebay.noaa.gov/.
[71] Neukermans G, Loisel H, Mériaux X, et al. Variability of total, back and side scattering to mass concentration of marine particles[C]//Proceedings of the XX Ocean Optics Conference. Anchorage, Alaska, USA:[s.n.]. 2010.
[72] Doron M, Babin M, Hembise O, et al. Ocean transparency from space:Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data[J]. Remote Sensing of Environment, 2011, 115(12):2986-3001.
[73] 何贤强, 潘德炉, 黄二辉, 等. 中国海透明度卫星遥感监测[J]. 中国工程科学, 2004, 6(9):33-37.
[74] Doron M, Babin Ml, Mantin A, et al. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance[J]. Journal of Geophysical Research Oceans, 2007, 112, C06003.
[75] Barrot G. GC-UM-ACR-PUG-01 Version 1.4. GlobColour product user guide[Z]. ESA DUE GlobColour, 2010.
[76] Minnett P J, Evans R H, Kearns E J, et al. Sea-surface temperature measured by the moderate resolution imaging spectroradiometer (MODIS)[C]//Geoscience and Remote Sensing Symposium, 2002.[s. 1.]:IEEE, 2002, 2:1177-1179.
[77] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Sea surface temperature products[EB/OL]. (2018-06-01)[2018-05-31]. http://oceancolor.gsfc.nasa.gov/.
[78] Gaiser P W, Germain K M St, Twarog E M, et al. The WindSat space borne polarimetric microwave radiometer:sensor description and early orbit performance[J]. IEEE Trans. on Geosci. and Remote Sensing, 2004, 42(11):2347-2361.
[79] Remote Sensing Systems. Sea surface temperature products[EB/OL]. (2016-01-10)[2016-01-09]. http://images.remss.com/wind/wind_vector_data_daily.html?&sat=wsat.
[80] Stewart R H. Introduction to physical oceanography[M]. Introduction to Physical Oceanography. Prentice-Hall, 2018.
[81] 毛庆文, 施平, 齐义泉. GEOSAT卫星遥感资料研究南海海面动力高度场和地转流场[J]. 海洋学报, 1999(1):11-16.
[82] 许可."海洋二号"卫星雷达高度计[J]. 高科技与产业化, 2013, 9(11):81-82.
[83] Paulino C, Escudero L. Use of night satellite imagery to monitor the squid fishery in Peru[A]. Handbook of Satellite Remote Sensing Image Interpretation:Applications for Marine Living Resources Conservation and Management, 2011, Case Study 10:143-153.
[84] 沈亚峰, 刘建强, 丁静, 等. 海洋一号C星光学载荷对海面溢油的识别能力分析[J]. 遥感学报, 2020, 24(8):933-944.