Exclusive: Meteorological satellites for meteorological disaster monitoring and early warning

Overview of satellite remote sensing technology for marine atmospheric and environment observation

  • TIAN Lin ,
  • WANG Xi ,
  • YANG Bingyun ,
  • WU Xiaojing
Expand
  • National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Received date: 2020-10-25

  Revised date: 2021-04-19

  Online published: 2021-09-07

Abstract

Satellite remote sensing is the best way to observe the vast ocean-atmosphere. With the development of satellite remote sensing technology in recent years, remarkable progress has been made in atmosphere and marine environment remote-sensing, and data assimilation in climate model. This paper summarizes the the latest development of marine meteorological satellite monitoring capabilities, methods and related products in sea fog, strong convection over ocean and marine environmental monitoring. And this provides the background and application information about ocean-atmosphere remote-sensing for scientific researchers and engineers.

Cite this article

TIAN Lin , WANG Xi , YANG Bingyun , WU Xiaojing . Overview of satellite remote sensing technology for marine atmospheric and environment observation[J]. Science & Technology Review, 2021 , 39(15) : 54 -66 . DOI: 10.3981/j.issn.1000-7857.2021.15.006

References

[1] Gultepe I, Tardif R, Michaelides S C, et al. Fog research:A review of past achievements and future perspectives[M]. Fog and Boundary Layer Clouds:Fog Visibility and Forecasting, Birkhäuser-Verlag:Pure and Applied Geophysics, 2008.
[2] Hunt G E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths[J]. Quarterly Journal of the Royal Meteorological Society, 1973, 99(420):346-369.
[3] Eyre J R, Brownscombe J L, Allan R J. Detection of fog at night using advanced very high resolution radiometer (AVHRR) imagery[J]. Meteorological Magazine, 1984, 113(1346):266-271.
[4] Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J]. Weather and Forecasting, 1995, 10(3):606-619.
[5] Cermak J, Bendix J. Dynamical nighttime fog/low stratus detection based on meteosat SEVIRI data:A feasibility study[M]. Birkhäuser-Verlag:Pure and Applied Geophysics, 2007.
[6] Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES893.9-mum data[J]. Weather and Forecasting, 1997, 12(3):664-677.
[7] Gao S, Wei W, Zhu L, et al. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data[J]. Acta Oceanologica Sinica, 2009, 28(2):23-35.
[8] Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection-a feasibility study[J]. Atmospheric Research, 2015, 151:212-223.
[9] Ma H, Wu X, Zou B, et al. Algorithm for daytime radiation fog detection based on MODIS/TERRA data over land[J]. Journal of Applied Remote Sensing, 2012, 6(1):3589.
[10] Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-a feasibilitystudy[J]. Weather and Forecasting, 2005, 20(6):989-1005.
[11] Cermak J, Bendix J. Detecting ground fog from space-a microphysics-based approach[J]. International Journal of Remote Sensing, 2011, 32(12):3345-3371.
[12] Cermak J, Bendix J. A novel approach to fog/low stratus detection using Meteosat 8 data[J]. Atmospheric Research, 2008, 87(3-4):279-292.
[13] 郝增周, 潘德炉, 龚芳, 等. 海雾的遥感光学辐射特性[J]. 光学学报, 2008, 28(12):2420-2426.
[14] Hao Z, Pan D, Gong F, et al. Sea fog characteristics based on MODIS data and streamer model[C]//Remote Sensing of Clouds and the Atmosphere XIV. Berlin, Germany:International Society for Optics and Photonics, 2009.
[15] Wu X, Li S. Automatic sea fog detection over Chinese adjacent oceans using Terra/MODIS data[J]. International Journal of Remote Sensing, 2014, 35(21-22):7430-7457.
[16] Ahn M H, Sohn E H, Hwang B J. A new algorithm for sea fog/stratus detection using GMS-5 IR data[J]. Advances in Atmospheric Sciences, 2003, 20(6):899-913.
[17] Cermak J. SOFOS-a new satellite-based operational fog observation scheme[M]. Philipps-Universität Marburg, 2006.
[18] Pavolonis M. GOES-R Advanced baseline imager (ABI) algorithm theoretical basis document for low cloud and fog[Z]. 2010
[19] Egli S, Thies B, Drnner J, et al. A 10 year fog and low stratus climatology for Europe based on Meteosat second generation data[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 143(702):530-541.
[20] 吴晓京, 李三妹, 廖蜜, 等. 基于20年卫星遥感资料的黄海,渤海海雾分布季节特征分析[J]. 海洋学报, 2015, 37(1):63-72.
[21] 吴晓京, 陈云浩, 李三妹. 应用MODIS数据对新疆北部大雾地面能见度和微物理参数的反演[J]. 遥感学报, 2005, 9(6):688-696.
[22] Yi L, Thies B, Zhang S, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection[J]. Remote Sensing, 2016, 8(1):8.
[23] Pagowski M, Gultepe I, King P. Analysis and modeling of an extremely dense fog event in Southern Ontario[J]. Journal of Applied Meteorology, 2004, 43(1):3-16.
[24] Van d V I R, Steeneveld G J, Wichers Schreur B G J, et al. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions[J]. Monthly Weather Review, 2010, 138(11):4237-4253.
[25] 高山红, 齐伊玲, 张守宝, 等. 利用循环3DVAR改进黄海海雾数值模拟初始场Ⅰ:WRF数值试验[J]. 中国海洋大学学报(自然科学版), 2010(10):1-9.
[26] 吴晓京, 朱江, 王曦, 等. 风云三号微波观测资料的海雾同化模拟[J]. 大气科学, 2017, 41(3):421-436.
[27] Müller M D, Schmutz C, Parlow E. A one-dimensional ensemble forecast and assimilation system for fog prediction[J]. Pure & Applied Geophysics, 2007, 164(6-7):1241-1264.
[28] Korea Meteorological Administration. Satellite images[EB/OL]. (2015-03-31)[2015-03-31]. http://web.kma.go.kr/chn/weather/images/satellite.jsp?data=fog&area=k&tm=2015.03.31&tmHour=09%3A00.
[29] 郑永光, 张小玲, 周庆亮, 等. 强对流天气短时临近预报业务技术进展与挑战[J]. 气象, 2010(7):33-42.
[30] 许林之. 海洋观测在海洋灾害预报中的作用[J]. 海洋技术学报, 1994, 13(1):60-63.
[31] 尹尽勇, 徐晶, 曹越男,等. 我国海洋气象预报业务现状与发展[J]. 气象科技进展, 2012, 2(6):17-26.
[32] Anagnostou E N, Kummerow C. Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(3):570-575.
[33] Burns B A, Wu X, Diak G R. Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels[J]. IEEE Transactions on Geoence & Remote Sensing, 1997, 35(6):1429-1437.
[34] Chesters D, Uccellini L W, Mostek A. VISSR atmospheric sounder/VAS/simulation experiment for a severe storm environment[J]. Monthly Weather Review, 1982, 110(3):198-216.
[35] Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D10):ACL 6-1-ACL 6-12.
[36] Liu G, Curry J A, Sheu R S. Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data[J]. Journal of Geophysical Research Atmospheres, 1995, 100(D7):13, 811-813, 826.
[37] Anagnostou E N, Kummerow C. Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations[J]. Journal of Atmospheric & Oceanic Technology, 1997, 14(3):570-575.
[38] Hong Y, Kummerow W S. Olson. Separation of convective and stratiform precipitation using microwave brightness temperature[J]. Journal of Applied Meteorology, 1999, 38(8):1195-1213.
[39] Burns B A, Wu X, Diak G R. Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997, 35(6):1429-1437.
[40] Hong G, Heygster G, Miao J, et al. Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements[J]. Journal of Geophysical Research Atmospheres, 2005, 110(5):D05205,1-D05205,15.
[41] Mapes B E, Houze R A. Cloud clusters and superclusters over the oceanic warm pool[J]. Monthly Weather Review, 1993, 121(5), 1398-1416.
[42] Weaver J, Purdom J F W, Smith S B. Comments on "Nowcasts of Thunderstorm Initiation and Evolution"[J]. Weather & Forecasting, 2009, 9(4):658-662.
[43] Chesters D, Uccellini L W, Mostek A. VISSR atmospheric sounder/VAS/simulation experiment for a severe storm environment[J]. Monthly Weather Review, 1982, 110(3):198-216.
[44] Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12m data[J]. Journal of Applied Meteorology, 1994, 33(2):212-229.
[45] Menzel W P, Holt F C. Application of GOES8/9 soundings to weather forecasting and nowcasting[J]. Bulletin of the American Meteorological Society, 1998, 79(10):2059-2078.
[46] Schmit T J, Feltz W F, Menzel W P, et al. Validation and use of GOES sounder moisture information[J], Weather and Forecasting, 2002, 17(1), 139-154.
[47] Koenig M, Coning E D. The MSG global instability indices product and its use as a nowcasting tool[J]. Weather & Forecasting, 2009, 24(1):272-285.
[48] Mecikalski J R, Bedka K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery[J]. Monthly Weather Review, 2006, 134(1):49-78.
[49] Mecikalski J R, Bedka K M, Paech S J, et al. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation[J]. Monthly Weather Review, 2010, 136(12):4899-4914.
[50] Siewert C W, Koenig M, Mecikalski J R. Application of Meteosat second generation data towards improving the nowcasting of convective initiation[J]. Meteorological Applications, 2010, 17(4):442-451.
[51] Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12-μm data[J]. Journal of Applied Meteorology, 1994, 33(2):212-229.
[52] Weaver J, Purdom J F W, Smith S B. Comments on "Nowcasts of Thunderstorm Initiation and Evolution"[J]. Weather & Forecasting, 2009, 9(4):658-662.
[53] Institute for Meteorological Satellite Studies Space Science and Engineering Center (SSEC), University of Wisconsin-Madison. Meteosat Second Generation (MSG) images[EB/OL]. (2013-10-03)[2013-10-03]. http://cimss.ssec.wisc.edu/snaap/cops/quicklooks.php.
[54] Yu R, Xu Y, Zhou T, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophysical Research Letters, 2007, 34(13):L13703,1-l13703,4.
[55] Yu R, Zhou T, Xiong A, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 2007, 34(1):223-234.
[56] 傅丙珊. 风云2号卫星云图在短时强对流天气预报中的应用[J]. 气象科技, 2004, 32(5):363-366.
[57] 许健民, 方宗义.《卫星水汽图像和位势涡度场在天气分析和预报中的应用》 导读[J]. 气象, 2008, 34(5):3-8.
[58] O'Reilly J E, Stéphane M, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research Oceans, 1998, 103(C11):24937-24953.
[59] O'Reilly J, Werdell P. Chlorophyll algorithms for ocean color sensors-OC4, Oc5& OC6[J]. Remote Sensing of Environment, 2019, 229:32-47.
[60] Maritorena S, Siegel D A. Consistent merging of satellite ocean color data sets using a bio-optical model[J]. Remote Sensing of Environment, 2005, 94(4):429-440.
[61] Maritorena S, d'Andon O H F. Merged satellite ocean color data products using a bio-optical model:Characteristics, benefits and issues[J]. Remote Sensing of Environment, 2010(114):1791-1804.
[62] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Chlorophyll products[EB/OL]. (2018-06-01)[2018-05-31]. http://oceancolor.gsfc.nasa.gov/.
[63] Morel A, Antoine D, Babin M, et al. Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program):The impact of natural variations in photosynthetic parameters on model predictive skill[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1996, 43(8):1273-1304
[64] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Euphotic zone depth products[EB/OL]. 2018-06-01[2018-06-10]. http://oceancolor.gsfc.nasa.gov/.
[65] 陈晶晶, 商少平, 商少凌. 台湾海峡真光层深度半分析算法遥感反演的真实性检验[J]. 厦门大学学报(自然版), 2007, 46(S1):12-17.
[66] 唐世林, 陈楚群, 詹海刚, 等. 南海真光层深度的遥感反演[J]. 热带海洋学报, 2007(1):9-15.
[67] Guo L Z, Xuan Z Y, Zhong J X, et al. Progress on suspended sediment concentration remote sensing in nearshore case 2 waters[J]. Progress in Geophysics, 2006, 21(1):321-326.
[68] Miller R L, Brent A M. Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters[J].Remote Sensing of Environment, 2004, 93(1-2):259-266.
[69] 王繁, 凌在盈, 周斌, 等. MODIS监测河口水体悬浮泥沙质量浓度的短期变异[J]. 浙江大学学报, 2009, 43(4):755-759.
[70] National Oceanic and Atmospheric Administration (NOAA). Concentrations of total suspended matter products[EB/OL]. (2015-01-31)[2015-01-28]. http://coastwatch.chesapeakebay.noaa.gov/.
[71] Neukermans G, Loisel H, Mériaux X, et al. Variability of total, back and side scattering to mass concentration of marine particles[C]//Proceedings of the XX Ocean Optics Conference. Anchorage, Alaska, USA:[s.n.]. 2010.
[72] Doron M, Babin M, Hembise O, et al. Ocean transparency from space:Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data[J]. Remote Sensing of Environment, 2011, 115(12):2986-3001.
[73] 何贤强, 潘德炉, 黄二辉, 等. 中国海透明度卫星遥感监测[J]. 中国工程科学, 2004, 6(9):33-37.
[74] Doron M, Babin Ml, Mantin A, et al. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance[J]. Journal of Geophysical Research Oceans, 2007, 112, C06003.
[75] Barrot G. GC-UM-ACR-PUG-01 Version 1.4. GlobColour product user guide[Z]. ESA DUE GlobColour, 2010.
[76] Minnett P J, Evans R H, Kearns E J, et al. Sea-surface temperature measured by the moderate resolution imaging spectroradiometer (MODIS)[C]//Geoscience and Remote Sensing Symposium, 2002.[s. 1.]:IEEE, 2002, 2:1177-1179.
[77] Goddard Space Flight Center, National Aeronautics and Space Administration (NASA). Sea surface temperature products[EB/OL]. (2018-06-01)[2018-05-31]. http://oceancolor.gsfc.nasa.gov/.
[78] Gaiser P W, Germain K M St, Twarog E M, et al. The WindSat space borne polarimetric microwave radiometer:sensor description and early orbit performance[J]. IEEE Trans. on Geosci. and Remote Sensing, 2004, 42(11):2347-2361.
[79] Remote Sensing Systems. Sea surface temperature products[EB/OL]. (2016-01-10)[2016-01-09]. http://images.remss.com/wind/wind_vector_data_daily.html?&sat=wsat.
[80] Stewart R H. Introduction to physical oceanography[M]. Introduction to Physical Oceanography. Prentice-Hall, 2018.
[81] 毛庆文, 施平, 齐义泉. GEOSAT卫星遥感资料研究南海海面动力高度场和地转流场[J]. 海洋学报, 1999(1):11-16.
[82] 许可."海洋二号"卫星雷达高度计[J]. 高科技与产业化, 2013, 9(11):81-82.
[83] Paulino C, Escudero L. Use of night satellite imagery to monitor the squid fishery in Peru[A]. Handbook of Satellite Remote Sensing Image Interpretation:Applications for Marine Living Resources Conservation and Management, 2011, Case Study 10:143-153.
[84] 沈亚峰, 刘建强, 丁静, 等. 海洋一号C星光学载荷对海面溢油的识别能力分析[J]. 遥感学报, 2020, 24(8):933-944.
Outlines

/