Review

Damage mechanics as applied to civil engineering

  • REN Xiaodan
Expand
  • School of Civil Engineering, Tongji University, Shanghai 200092, China

Received date: 2019-10-31

  Revised date: 2020-07-13

  Online published: 2021-09-07

Abstract

In the past 30 years, significant progress has been made in the field of civil engineering and infrastructure construction in China, greatly supporting the continuous development of the economy. While China's economy steps into the "new normal" phase, the development of civil engineering shows some new features and the developments of fundamental theories and advanced technologies attract more and more attention. Nonlinear analysis of structures, one of the essential problems in civil engineering, has been concerned by more and more researchers and engineers. For constitutive modeling of engineering materials, the damage model plays an important role where structural damage and failure are considered. In this paper, the historical development of damage model for quasi-brittle materials is briefly reviewed. Then V&V of the damage model is described and its applications to civil engineering are presented by case studies. Finally, an application of the theory to bio-engineering is shown with a case. In the near future, the transformation and upgrading of traditional civil engineering will be promoted by the coupling between its fundamental research and engineering application.

Cite this article

REN Xiaodan . Damage mechanics as applied to civil engineering[J]. Science & Technology Review, 2021 , 39(15) : 84 -94 . DOI: 10.3981/j.issn.1000-7857.2021.15.009

References

[1] Kachanov L M. Time of the rupture process under creep conditions[J]. Proceedings of the Academy of Sciences of the USSR, 1958, 8:26-31.
[2] Rabotnov Y N, Leckie F A, Prager W. Creep problems in structural members[J]. Journal of Applied MechanicsASME, 1970, 37(1):249-265.
[3] Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamic loading[C]//Proceedings of ICAM-1. New York, USA:Elsevier, 1971:540-549.
[4] Lemaitre J, Chaboche J L. Phenomenological approach of damage rupture[J]. Journal de Mecanique Appliquee, 1978, 2(3):317-365.
[5] Dougill J W. On stable progressively fracturing solids[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1976, 27(4):423-437.
[6] Ladeveze P. On an anisotropic damage theory (in French)[D]. Cachan, France:laboratoire de Mecanique et Technologie, 1983.
[7] Mazars J. A description of micro- and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5-6):729-737.
[8] Simo J C, Ju J W. Strain-based and stress-based continuum damage models-I. Formulation[J]. Mathematical & Computer Modelling, 1987, 12(3):378-378.
[9] Simo J C, Ju J W. Strain-based and stress-based continuum damage models-II. Computational aspects[J]. Mathematical & Computer Modelling, 1989, 12(3):378-378.
[10] Ju J W. On energy-based coupled elastoplastic damage theories:Constitutive modeling and computational aspects[J]. International Journal of Solids & Structures, 1989, 25(7):803-833.
[11] Ju J W. Isotropic and anisotropic damage variables in continuum damage mechanics[J]. Journal of Engineering Mechanics, ASCE, 1990,116(12):2764-2770.
[12] Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9):1225-1245.
[13] Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures[J]. International Journal of Solids and Structures, 1998, 35(14):1533-1558.
[14] 李杰, 吴建营. 混凝土弹塑性损伤本构模型研究I:基本公式[J]. 土木工程学报, 2005, 38(9):14-20.
[15] Wu J Y, Li J. A unified plastic-damage model for concrete and its applications[J]. Advances in Structural Engineering:Theory and Applications, 2006(2):313-319.
[16] Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete[J]. International Journal of Solids & Structures, 2006, 43(3):583-612.
[17] Wu J Y, Li J. Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures[J]. Structural Engineering and Mechanics, 2007, 25(5):519-540.
[18] 曹杨, 李杰. 双连梁短肢剪力墙结构的随机损伤演化分析[J]. 力学季刊, 2008, 29(1):102-112.
[19] 李杰, 李奎明. 钢筋混凝土短肢剪力墙结构非线性分析研究[J]. 建筑结构学报, 2009, 30(1):23-30.
[20] 任晓丹, 李杰. 混凝土损伤与塑性变形计算[J]. 建筑结构, 2015, 45(2):29-31,74.
[21] Li J, Ren X D. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solids and Structures, 2009, 46(11-12):2407-2419.
[22] 张其云. 混凝土随机损伤本构关系研究[D]. 上海:同济大学土木工程学院, 2001.
[23] Kandarpa S, Kirkner D J, Spencer B F. Stochastic damage model for brittle materials subjected to monotonic loading[J]. Journal of Engineering Mechanics-ASCE, 1996.122(8):788-795.
[24] 李杰, 杨卫忠. 混凝土弹塑性随机损伤本构关系研究[J]. 土木工程学报, 2009(2):31-38.
[25] Ren X D, Yue Q X. Reliability assessment of reinforced concrete structures based on random damage model[J]. Structure and Infrastructure Engineering, 2018, 14(6):780-790.
[26] Cervera M, Oliver J, Manzoli O. A rate-dependent isotropic damage model for the seismic analysis of concrete dams[J]. Earthquake Engineering & Structural Dynamics, 1996, 25(9):987-1010.
[27] Ren X D, Li J. A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage[J]. International Journal of Damage Mechanics, 2013, 22(4):530-555.
[28] 李杰, 任晓丹, 杨卫忠. 混凝土二维本构关系试验研究[J]. 土木工程学报, 2007, 40(4):6-12.
[29] Karsan I D, Jirsa J O. Behavior of concrete under compressive loadings[J]. Journal of the Structural Division, 1969, 95(12):2543-2563.
[30] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739.
[31] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. Experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9):869-886.
[32] Sparks P R, Menzies J B. The effect of the rate of the loading upon the static fatigue strength of plain concrete in compression[J]. Magazine of Concrete Research. 1973, 25(83):73~80.
[33] 董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997(7):72-77.
[34] Popp C. Unterschungen fiber das verhalten von beton bei schlagartiger beanspruchung[R]. Stuttgart, Germany:Deutsche Ausschuss fur Stahlbeton, 1977.
[35] McNeice G M. Elastic-plastic bending analysis of plates and slabs by the finite element method[D]. London:Department of Civil and Engineering, University of London, 1967.
[36] Thomsen J H, Wallace J W. Displacement-based design of slender reinforced concrete structural walls-experimental verification[J]. Journal of Structural Engineering, 2004, 130(4):618-630.
[37] Belytschko T B, Andriacchi T P, Schultz A B, et al. Analog studies of forces in the human spine:Computational techniques[J]. Journal of Biomechanics, 1973, 6(4):361-371.
[38] Andriacchi T P, Schultz A B, Belytschko T B, et al. A model for studies of mechanical interactions between the human spine and rib cage[J]. Journal of Biomechanics, 1974, 7(6):497-507.
[39] Belytschko T B, Kulak R F, Schultz AB, et al., Finite element stress analysis of an intervertebral disc[J]. Journal of Biomechanics, 1974, 7(3):277-285.
[40] Huiskes R, Chao E Y. A survey of finite element analysis in orthopedic biomechanics:The first decade[J]. Journal of Biomechanics, 1983, 16(6):385-409.
[41] Hollister S J, Brennan J M, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress[J]. Journal of Biomechanics, 1994, 27(4):433-444.
[42] Müller R, Rüegsegger P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures[J]. Medical Engineering and Physics, 1995, 17(2):126-133.
[43] Ulrich D, Rietbergen B, Weinans H, et al. Finite element analysis of trabecular bone structure:A comparison of image-based meshing techniques[J]. Journal of Biomechanics, 1998, 31(12):1187-1192.
[44] Buie H R, Campbell G M, Klinck R J, et al. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo microCT bone analysis[J]. Bone, 2007, 41(4):505-515.
[45] Verhulp E, Rietbergen B, Müller R, et al. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations[J]. Journal of Biomechanics, 2008, 41(7):1479-1485.
[46] Chen Y, Pani M, Taddei F, et al. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data:A convergence study[J]. Journal of Biomechanical Engineering, 2014, 136(10):1013-1020.
[47] Kulper S A, Fang C X, R X D, et al. Development and initial validation of a novel smoothed-particle hydrody-namics-based simulation model of trabecular bone penetration by metallic implants[J]. Journal of Orthopaedic Research, 2018, 36(4):1114-1123.
[48] Kulper S A, Fang C X, Ren X D, et al. A novel fracture mechanics model explaining the axial penetration of bone-like porous, compressible solids by various orthopaedic implant tips[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:128-135.
Outlines

/