[1] Kachanov L M. Time of the rupture process under creep conditions[J]. Proceedings of the Academy of Sciences of the USSR, 1958, 8:26-31.
[2] Rabotnov Y N, Leckie F A, Prager W. Creep problems in structural members[J]. Journal of Applied MechanicsASME, 1970, 37(1):249-265.
[3] Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamic loading[C]//Proceedings of ICAM-1. New York, USA:Elsevier, 1971:540-549.
[4] Lemaitre J, Chaboche J L. Phenomenological approach of damage rupture[J]. Journal de Mecanique Appliquee, 1978, 2(3):317-365.
[5] Dougill J W. On stable progressively fracturing solids[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1976, 27(4):423-437.
[6] Ladeveze P. On an anisotropic damage theory (in French)[D]. Cachan, France:laboratoire de Mecanique et Technologie, 1983.
[7] Mazars J. A description of micro- and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5-6):729-737.
[8] Simo J C, Ju J W. Strain-based and stress-based continuum damage models-I. Formulation[J]. Mathematical & Computer Modelling, 1987, 12(3):378-378.
[9] Simo J C, Ju J W. Strain-based and stress-based continuum damage models-II. Computational aspects[J]. Mathematical & Computer Modelling, 1989, 12(3):378-378.
[10] Ju J W. On energy-based coupled elastoplastic damage theories:Constitutive modeling and computational aspects[J]. International Journal of Solids & Structures, 1989, 25(7):803-833.
[11] Ju J W. Isotropic and anisotropic damage variables in continuum damage mechanics[J]. Journal of Engineering Mechanics, ASCE, 1990,116(12):2764-2770.
[12] Cervera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9):1225-1245.
[13] Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures[J]. International Journal of Solids and Structures, 1998, 35(14):1533-1558.
[14] 李杰, 吴建营. 混凝土弹塑性损伤本构模型研究I:基本公式[J]. 土木工程学报, 2005, 38(9):14-20.
[15] Wu J Y, Li J. A unified plastic-damage model for concrete and its applications[J]. Advances in Structural Engineering:Theory and Applications, 2006(2):313-319.
[16] Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete[J]. International Journal of Solids & Structures, 2006, 43(3):583-612.
[17] Wu J Y, Li J. Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures[J]. Structural Engineering and Mechanics, 2007, 25(5):519-540.
[18] 曹杨, 李杰. 双连梁短肢剪力墙结构的随机损伤演化分析[J]. 力学季刊, 2008, 29(1):102-112.
[19] 李杰, 李奎明. 钢筋混凝土短肢剪力墙结构非线性分析研究[J]. 建筑结构学报, 2009, 30(1):23-30.
[20] 任晓丹, 李杰. 混凝土损伤与塑性变形计算[J]. 建筑结构, 2015, 45(2):29-31,74.
[21] Li J, Ren X D. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solids and Structures, 2009, 46(11-12):2407-2419.
[22] 张其云. 混凝土随机损伤本构关系研究[D]. 上海:同济大学土木工程学院, 2001.
[23] Kandarpa S, Kirkner D J, Spencer B F. Stochastic damage model for brittle materials subjected to monotonic loading[J]. Journal of Engineering Mechanics-ASCE, 1996.122(8):788-795.
[24] 李杰, 杨卫忠. 混凝土弹塑性随机损伤本构关系研究[J]. 土木工程学报, 2009(2):31-38.
[25] Ren X D, Yue Q X. Reliability assessment of reinforced concrete structures based on random damage model[J]. Structure and Infrastructure Engineering, 2018, 14(6):780-790.
[26] Cervera M, Oliver J, Manzoli O. A rate-dependent isotropic damage model for the seismic analysis of concrete dams[J]. Earthquake Engineering & Structural Dynamics, 1996, 25(9):987-1010.
[27] Ren X D, Li J. A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage[J]. International Journal of Damage Mechanics, 2013, 22(4):530-555.
[28] 李杰, 任晓丹, 杨卫忠. 混凝土二维本构关系试验研究[J]. 土木工程学报, 2007, 40(4):6-12.
[29] Karsan I D, Jirsa J O. Behavior of concrete under compressive loadings[J]. Journal of the Structural Division, 1969, 95(12):2543-2563.
[30] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J]. ACI Materials Journal, 1998, 95(6):735-739.
[31] Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. Experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9):869-886.
[32] Sparks P R, Menzies J B. The effect of the rate of the loading upon the static fatigue strength of plain concrete in compression[J]. Magazine of Concrete Research. 1973, 25(83):73~80.
[33] 董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997(7):72-77.
[34] Popp C. Unterschungen fiber das verhalten von beton bei schlagartiger beanspruchung[R]. Stuttgart, Germany:Deutsche Ausschuss fur Stahlbeton, 1977.
[35] McNeice G M. Elastic-plastic bending analysis of plates and slabs by the finite element method[D]. London:Department of Civil and Engineering, University of London, 1967.
[36] Thomsen J H, Wallace J W. Displacement-based design of slender reinforced concrete structural walls-experimental verification[J]. Journal of Structural Engineering, 2004, 130(4):618-630.
[37] Belytschko T B, Andriacchi T P, Schultz A B, et al. Analog studies of forces in the human spine:Computational techniques[J]. Journal of Biomechanics, 1973, 6(4):361-371.
[38] Andriacchi T P, Schultz A B, Belytschko T B, et al. A model for studies of mechanical interactions between the human spine and rib cage[J]. Journal of Biomechanics, 1974, 7(6):497-507.
[39] Belytschko T B, Kulak R F, Schultz AB, et al., Finite element stress analysis of an intervertebral disc[J]. Journal of Biomechanics, 1974, 7(3):277-285.
[40] Huiskes R, Chao E Y. A survey of finite element analysis in orthopedic biomechanics:The first decade[J]. Journal of Biomechanics, 1983, 16(6):385-409.
[41] Hollister S J, Brennan J M, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress[J]. Journal of Biomechanics, 1994, 27(4):433-444.
[42] Müller R, Rüegsegger P. Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures[J]. Medical Engineering and Physics, 1995, 17(2):126-133.
[43] Ulrich D, Rietbergen B, Weinans H, et al. Finite element analysis of trabecular bone structure:A comparison of image-based meshing techniques[J]. Journal of Biomechanics, 1998, 31(12):1187-1192.
[44] Buie H R, Campbell G M, Klinck R J, et al. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo microCT bone analysis[J]. Bone, 2007, 41(4):505-515.
[45] Verhulp E, Rietbergen B, Müller R, et al. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations[J]. Journal of Biomechanics, 2008, 41(7):1479-1485.
[46] Chen Y, Pani M, Taddei F, et al. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data:A convergence study[J]. Journal of Biomechanical Engineering, 2014, 136(10):1013-1020.
[47] Kulper S A, Fang C X, R X D, et al. Development and initial validation of a novel smoothed-particle hydrody-namics-based simulation model of trabecular bone penetration by metallic implants[J]. Journal of Orthopaedic Research, 2018, 36(4):1114-1123.
[48] Kulper S A, Fang C X, Ren X D, et al. A novel fracture mechanics model explaining the axial penetration of bone-like porous, compressible solids by various orthopaedic implant tips[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:128-135.