Exclusive: Fine chemical wastewater treatment technology

Status quo of industrial waste salt resource utilization and its development trend

  • WANG Lian ,
  • CHEN Lifang ,
  • GAO Jingjing ,
  • QIU Xin ,
  • DAI Jianjun
Expand
  • Nanjing University and Yancheng Academy of Environmental Technology and Engineering, Yancheng 224000, China

Received date: 2021-03-09

  Revised date: 2021-07-01

  Online published: 2021-09-23

Abstract

Chemical industry production produces a large amount of waste salt to result in environmental pollution due to lack of proper treatment processes. Landfill is presently the main disposal method of waste salts in China, which is impossible to recycle the waste salt. This paper introduces two approaches to waste salt recycling and treatments in detail, that is, the high temperature pyrolysis+brine purification process and the resin adsorption+advanced oxidation process Several application cases are taken to analyze and find the reason for their low rates of waste salt resource utilization. It turns out that the treatment and reuse of waste salt lack related standards and regulations, on the other hand, economical and practical technology for massive application is still unavailable. Therefore some constructive suggestions are put forward, including the industrial waste salt discharge amount should be reduced to some extent to realize waste salt recycling, new method should be developed, and new laws should be published for utilization of waste salt.

Cite this article

WANG Lian , CHEN Lifang , GAO Jingjing , QIU Xin , DAI Jianjun . Status quo of industrial waste salt resource utilization and its development trend[J]. Science & Technology Review, 2021 , 39(17) : 9 -16 . DOI: 10.3981/j.issn.1000-7857.2021.17.001

References

[1] 王昱, 王浩, 周海云. 化工废盐处理处置技术与政策的发展研究[J]. 污染防治技术, 2017, 30(4):11-15.
[2] Li J, Zheng J Y, Peng X Q, et al. NaCl recovery from organic pollutants-containing salt waste via dual effects of aqueous two-phase systems (ATPS) and crystal regulation with acetone[J]. Journal of Cleaner Production, 2020, 260(4):121044.
[3] 谢濠江, 王政强, 尹健, 等. 有机废盐水处理技术介绍及分析[J]. 中国氯碱, 2019, 33(1):33-36.
[4] Panagopoulos A. Beneficiation of saline effluents from seawater desalination plants:Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105338.
[5] 潜培豪, 池作和, 王进卿, 等. 含盐有机废液热解动力学及炭化特性[J]. 高校化学工程学报, 2018, 32(6):1450-1457.
[6] Tang H, Xu M, Hu H, et al. In-situ removal of sulfur from high sulfur solid waste during molten salt pyrolysis[J]. Fuel, 2018, 231:489-494.
[7] 左武, 周尤超, 葛仕福, 等. 高含盐有机废液热处理技术研究进展[J]. 环境工程, 2018, 36(4):52-56.
[8] 马静颖. 含盐高浓度有机废液的蒸发结晶及流化床焚烧处理研究[D]. 杭州:浙江大学, 2006.
[9] Lin C Q, Chi Y, Jin Y Q, et al. Molten salt oxidation of organic hazardous waste with high salt content[J]. Waste Management & Research, 2018, 36(2):140-148.
[10] 李唯实, 徐亚, 雷国元, 等. 典型农药废盐热处理特性及适用性[J]. 环境科学研究, 2018, 31(10):1779-1786.
[11] 苏梦, 祝建中, 朱晓强, 等. 二氰蒽醍农药废盐热处理特性[J]. 科学技术与工程, 2019, 19(24):423-429.
[12] 胡卫平, 贺周初, 朱文新, 等. 农药副产废盐渣的无害化处理及利用[J]. 精细化工中间体, 2013, 43(3):48-50.
[13] Hu S, Finklea H, Liu X. A review on molten sulfate salts induced hot corrosion[J]. Journal of Materials Science & Technology, 2021, 90:243-254.
[14] 丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2):58-61.
[15] 姜海超, 申银山, 陈晓飞, 等. 含氰工业废盐中杂质的高温氧化脱除实验研究[J]. 无机盐工业, 2020, 52(2):62-64.
[16] 黄敏锐, 李春萍, 唐柯, 等. 一种农药废盐综合处理方法:CN202010336881X[P]. 2020-07-31.
[17] Liu S G, Wang J, Huang W T, et al. Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin:Interaction models and adsorption mechanisms[J]. Chemosphere, 2019, 214:821-829.
[18] Luis A D, Lombrana J I, Menendez A. Modeling of the radicalary state in the H2O2/UV oxidation system to predict the degradation kinetics of phenolic mixture solutions[J]. Environmental Progress & Sustainable Energy, 2011, 30(2):196-207.
[19] 李娟. 四溴双酚A废水的处理及氯苯资源化回收[D]. 天津:天津工业大学, 2012.
[20] 吴中杰, 刘国强, 张燕, 等. 类芬顿法脱除高盐废水中有机物工艺研究[J]. 化学工程, 2017, 45(5):15-18.
[21] 张辉, 朱爱美, 张俊, 等. 高盐分海洋沉积物样品洗盐预处理方法的研究[J]. 海洋科学进展, 2012, 30(3):423-430.
[22] 姚小远. 水合阱副产盐渣的回收利用[J]. 中国氯碱, 2006, 29(9):40-42.
[23] 戎倩云. 2,4-D农药生产过程中缩合工段废水的处理与资源化[D]. 南京:南京师范大学, 2019.
[24] 彭婧婧, 李亮, 姜杰文, 等. 共沉淀法去除废水中高浓度氯离子的研究[J]. 净水技术, 2019, 38(3):95-101.
[25] 杨海龙, 孙彤, 刘连利, 等. 钛白废盐制备MnCO3粉体的研究[J]. 渤海大学学报(自然科学版), 2012, 33(4):345-349.
[26] 樊锐, 刘玉坤. 工业废盐资源化处置现状及分析[J]. 环境与发展, 2020, 32(8):62-63.
[27] Melián-Martel N, Sadhwani J J, Ovidio S O P. Saline waste disposal reuse for desalination plants for the chlor-alkali industry The particular case of pozo izquierdo SWRO desalination plant[J]. Desalination, 2011, 281:35-41.
[28] Reig M, Casas S, Aladjem C, et al. Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342:107-117.
[29] Lei J L, Chen X H, Liu X D, et al. Under-brine superaerophobic perfluorinated ion exchange membrane with re-entrant superficial microstructures for high energy efficiency of NaCl aqueous solution electrolysis[J]. Journal of Membrane Science, 2021, 619:118801.
[30] Shen J, Huang J, Ruan H, et al. Techno-economic analysis of resource recovery of glyphosate liquor by membrane technology[J]. Desalination, 2014, 342:118-125.
[31] Wang X X, Wang M, Jia Y X, The feasible study on thereclamation of the glyphosate neutralization liquor by bipolar membraneelectrodialysis[J]. Desalination, 2012, 300:58-63.
[32] 高洁, 庞全世, 李权, 等. 盐湖卤水冬季析硝制备高纯元明粉工艺研究[J]. 无机盐工业, 2011, 43(3):54.
[33] Reig M, Casas S, Aladjem C, et al. Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342:107-117.
[34] Shi J, Huang W, Han H, et al. Pollution control of wastewater from the coal chemical industry in China:Environmental management policy and technical standards[J]. Renewable and Sustainable Energy Reviews, 2021, 143(4):110883.
[35] Shi J X, Huang W P, Han H J, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493:114640.
[36] Bca B, Sya B, Qi C, et al. Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China:Discharge or reuse?[J]. Energy Policy, 2020, 137:111107
[37] Fang D, Liao X, Zhang X, et al. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash:As a reductant to remove chromium and vanadium from vanadium industrial wastewater[J]. Journal of Hazardous Materials, 2017, 342(15):436-445.
[38] Kang K C, Linga P, Park K N, et al. Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl-, SO42-)[J]. Desalination, 2014, 353:84-90.
[39] Liu Z, Wang L, Lv Y, et al. Impactful modulation of micro-structures of acid-resistant picolylamine-based chelate resins for efficient separation of heavy metal cations from strongly acidic media[J]. Chemical Engineering Journal, 2021, 420:129684.
[40] Liu Y, Pang D, Wang L, et al. Electrochemically reduced phytic acid-doped TiO2 nanotubes for the efficient electrochemical degradation of toxic pollutants[J]. Journal of Hazardous Materials, 2021, 414:125600.
[41] Murcia M D, Versioning N O, Briantceva N, et al. Development of a kinetic model for the UV/H2O2 photodegradation of 2, 4-dichlorophenoxiacetic acid[J]. Chemical Engineering Journal, 2015, 266:356-367.
[42] Yang W, Zhou M, Oturan N, et al. Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2,4-D from water by ironfree electrochemical advanced oxidation[J]. Electrochimica Acta, 2019, 297:582-592.
[43] Li Y, Liu L, Zhang Q, et al. Highly cost-effective removal of 2,4-dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode[J]. Electrochimica Acta, 2021, 377:138079.
[44] 张以飞. 高温炭化法处理工业废盐工程方案研究[J]. 环境与发展, 2020, 32(4):58-59.
[45] 杨文振, 李宁宇, 邹明璟, 等. 化工废盐处理与资源化技术发展现状[C]//2019中国环境科学学会科学技术年会论文集(第二卷). 北京:中国环境科学学会, 2019:2190-2197.
[46] 刘铮, 党春阁, 宋丹娜, 等. 精细化工业园区化工废盐处理问题探究[J]. 化工管理, 2019(6):153-154
Outlines

/