[1] 王昱, 王浩, 周海云. 化工废盐处理处置技术与政策的发展研究[J]. 污染防治技术, 2017, 30(4):11-15.
[2] Li J, Zheng J Y, Peng X Q, et al. NaCl recovery from organic pollutants-containing salt waste via dual effects of aqueous two-phase systems (ATPS) and crystal regulation with acetone[J]. Journal of Cleaner Production, 2020, 260(4):121044.
[3] 谢濠江, 王政强, 尹健, 等. 有机废盐水处理技术介绍及分析[J]. 中国氯碱, 2019, 33(1):33-36.
[4] Panagopoulos A. Beneficiation of saline effluents from seawater desalination plants:Fostering the zero liquid discharge (ZLD) approach-A techno-economic evaluation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105338.
[5] 潜培豪, 池作和, 王进卿, 等. 含盐有机废液热解动力学及炭化特性[J]. 高校化学工程学报, 2018, 32(6):1450-1457.
[6] Tang H, Xu M, Hu H, et al. In-situ removal of sulfur from high sulfur solid waste during molten salt pyrolysis[J]. Fuel, 2018, 231:489-494.
[7] 左武, 周尤超, 葛仕福, 等. 高含盐有机废液热处理技术研究进展[J]. 环境工程, 2018, 36(4):52-56.
[8] 马静颖. 含盐高浓度有机废液的蒸发结晶及流化床焚烧处理研究[D]. 杭州:浙江大学, 2006.
[9] Lin C Q, Chi Y, Jin Y Q, et al. Molten salt oxidation of organic hazardous waste with high salt content[J]. Waste Management & Research, 2018, 36(2):140-148.
[10] 李唯实, 徐亚, 雷国元, 等. 典型农药废盐热处理特性及适用性[J]. 环境科学研究, 2018, 31(10):1779-1786.
[11] 苏梦, 祝建中, 朱晓强, 等. 二氰蒽醍农药废盐热处理特性[J]. 科学技术与工程, 2019, 19(24):423-429.
[12] 胡卫平, 贺周初, 朱文新, 等. 农药副产废盐渣的无害化处理及利用[J]. 精细化工中间体, 2013, 43(3):48-50.
[13] Hu S, Finklea H, Liu X. A review on molten sulfate salts induced hot corrosion[J]. Journal of Materials Science & Technology, 2021, 90:243-254.
[14] 丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2):58-61.
[15] 姜海超, 申银山, 陈晓飞, 等. 含氰工业废盐中杂质的高温氧化脱除实验研究[J]. 无机盐工业, 2020, 52(2):62-64.
[16] 黄敏锐, 李春萍, 唐柯, 等. 一种农药废盐综合处理方法:CN202010336881X[P]. 2020-07-31.
[17] Liu S G, Wang J, Huang W T, et al. Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin:Interaction models and adsorption mechanisms[J]. Chemosphere, 2019, 214:821-829.
[18] Luis A D, Lombrana J I, Menendez A. Modeling of the radicalary state in the H2O2/UV oxidation system to predict the degradation kinetics of phenolic mixture solutions[J]. Environmental Progress & Sustainable Energy, 2011, 30(2):196-207.
[19] 李娟. 四溴双酚A废水的处理及氯苯资源化回收[D]. 天津:天津工业大学, 2012.
[20] 吴中杰, 刘国强, 张燕, 等. 类芬顿法脱除高盐废水中有机物工艺研究[J]. 化学工程, 2017, 45(5):15-18.
[21] 张辉, 朱爱美, 张俊, 等. 高盐分海洋沉积物样品洗盐预处理方法的研究[J]. 海洋科学进展, 2012, 30(3):423-430.
[22] 姚小远. 水合阱副产盐渣的回收利用[J]. 中国氯碱, 2006, 29(9):40-42.
[23] 戎倩云. 2,4-D农药生产过程中缩合工段废水的处理与资源化[D]. 南京:南京师范大学, 2019.
[24] 彭婧婧, 李亮, 姜杰文, 等. 共沉淀法去除废水中高浓度氯离子的研究[J]. 净水技术, 2019, 38(3):95-101.
[25] 杨海龙, 孙彤, 刘连利, 等. 钛白废盐制备MnCO3粉体的研究[J]. 渤海大学学报(自然科学版), 2012, 33(4):345-349.
[26] 樊锐, 刘玉坤. 工业废盐资源化处置现状及分析[J]. 环境与发展, 2020, 32(8):62-63.
[27] Melián-Martel N, Sadhwani J J, Ovidio S O P. Saline waste disposal reuse for desalination plants for the chlor-alkali industry The particular case of pozo izquierdo SWRO desalination plant[J]. Desalination, 2011, 281:35-41.
[28] Reig M, Casas S, Aladjem C, et al. Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342:107-117.
[29] Lei J L, Chen X H, Liu X D, et al. Under-brine superaerophobic perfluorinated ion exchange membrane with re-entrant superficial microstructures for high energy efficiency of NaCl aqueous solution electrolysis[J]. Journal of Membrane Science, 2021, 619:118801.
[30] Shen J, Huang J, Ruan H, et al. Techno-economic analysis of resource recovery of glyphosate liquor by membrane technology[J]. Desalination, 2014, 342:118-125.
[31] Wang X X, Wang M, Jia Y X, The feasible study on thereclamation of the glyphosate neutralization liquor by bipolar membraneelectrodialysis[J]. Desalination, 2012, 300:58-63.
[32] 高洁, 庞全世, 李权, 等. 盐湖卤水冬季析硝制备高纯元明粉工艺研究[J]. 无机盐工业, 2011, 43(3):54.
[33] Reig M, Casas S, Aladjem C, et al. Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis[J]. Desalination, 2014, 342:107-117.
[34] Shi J, Huang W, Han H, et al. Pollution control of wastewater from the coal chemical industry in China:Environmental management policy and technical standards[J]. Renewable and Sustainable Energy Reviews, 2021, 143(4):110883.
[35] Shi J X, Huang W P, Han H J, et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination, 2020, 493:114640.
[36] Bca B, Sya B, Qi C, et al. Life cycle economic assessment of coal chemical wastewater treatment facing the ‘Zero liquid discharge’ industrial water policies in China:Discharge or reuse?[J]. Energy Policy, 2020, 137:111107
[37] Fang D, Liao X, Zhang X, et al. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash:As a reductant to remove chromium and vanadium from vanadium industrial wastewater[J]. Journal of Hazardous Materials, 2017, 342(15):436-445.
[38] Kang K C, Linga P, Park K N, et al. Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl-, SO42-)[J]. Desalination, 2014, 353:84-90.
[39] Liu Z, Wang L, Lv Y, et al. Impactful modulation of micro-structures of acid-resistant picolylamine-based chelate resins for efficient separation of heavy metal cations from strongly acidic media[J]. Chemical Engineering Journal, 2021, 420:129684.
[40] Liu Y, Pang D, Wang L, et al. Electrochemically reduced phytic acid-doped TiO2 nanotubes for the efficient electrochemical degradation of toxic pollutants[J]. Journal of Hazardous Materials, 2021, 414:125600.
[41] Murcia M D, Versioning N O, Briantceva N, et al. Development of a kinetic model for the UV/H2O2 photodegradation of 2, 4-dichlorophenoxiacetic acid[J]. Chemical Engineering Journal, 2015, 266:356-367.
[42] Yang W, Zhou M, Oturan N, et al. Enhanced activation of hydrogen peroxide using nitrogen doped graphene for effective removal of herbicide 2,4-D from water by ironfree electrochemical advanced oxidation[J]. Electrochimica Acta, 2019, 297:582-592.
[43] Li Y, Liu L, Zhang Q, et al. Highly cost-effective removal of 2,4-dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode[J]. Electrochimica Acta, 2021, 377:138079.
[44] 张以飞. 高温炭化法处理工业废盐工程方案研究[J]. 环境与发展, 2020, 32(4):58-59.
[45] 杨文振, 李宁宇, 邹明璟, 等. 化工废盐处理与资源化技术发展现状[C]//2019中国环境科学学会科学技术年会论文集(第二卷). 北京:中国环境科学学会, 2019:2190-2197.
[46] 刘铮, 党春阁, 宋丹娜, 等. 精细化工业园区化工废盐处理问题探究[J]. 化工管理, 2019(6):153-154