Exclusive: Fine chemical wastewater treatment technology

Experimental research on characteristics in evaporation process of organic industrial wastewater with high salinity and concentration

  • HOU Chao ,
  • LIN Xuejun ,
  • TAO Lei ,
  • YANG Luwei ,
  • SUN Guixiang ,
  • YANG Rong
Expand
  • 1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Jiangsu Zhongkeshuangxin Environmental Protection Equipment Company Limited, Yancheng 224000, China;
    4. Beijing Huayuantaimeng Energy-saving Equipment Company Limited, Beijing 100084, China

Received date: 2021-03-09

  Revised date: 2021-07-01

  Online published: 2021-09-23

Abstract

A set of devices for wastewater evaporation have been built and a series of researches on evaporation of distilled ammonia wastewater and pigment production wastewater have been carried out to obtain the characteristics of the evaporation process so as to provide basic data for evaporation system design. The results show that the boiling point elevation of the wastewater increases gradually with the rise of concentration multiple, and that the boiling points of distilled ammonia wastewater and pigment production wastewater from different process stages are slightly different under the same concentration multiple. The COD in the condensate water of pigment production wastewater gradually decreases in the evaporation process. Change rules of TDS and pH in the condensate water of different kinds of wastewater are roughly the same, i.e., to decrease firstly then tend to be constant, mainly being dependent upon the volatile substances and droplet inclusion in the wastewater.

Cite this article

HOU Chao , LIN Xuejun , TAO Lei , YANG Luwei , SUN Guixiang , YANG Rong . Experimental research on characteristics in evaporation process of organic industrial wastewater with high salinity and concentration[J]. Science & Technology Review, 2021 , 39(17) : 39 -44 . DOI: 10.3981/j.issn.1000-7857.2021.17.005

References

[1] 许金宝. 国内精细化工企业现状及未来发展趋势探讨[J]. 精细与专用化学品, 2017, 25(10):18-25.
[2] 韦朝海, 何勤聪, 帅伟, 等. 精细化工废水的污染特性分析及其控制策略[J]. 化工进展, 2009, 28(11):2047-2051, 2075.
[3] 中国环境检测总站. 2015年环境统计年报[EB/OL].[2021-04-19]. http://tjtj.org/cer.html.
[4] 宋永会, 魏健, 马印臣, 等. 中和-络合萃取-双极膜电渗析处理金刚烷胺制药废水[J]. 环境科学学报, 2015, 35(1):200-206.
[5] 乔鑫龙, 方梦祥, 岑建孟, 等. 萃取法处理含酚废水的研究进展[J]. 水处理技术, 2016, 42(4):7-11,16.
[6] 翟廷婷, 朱兆坚, 王宁, 等. 树脂吸附法深度处理矿井水中氟化物的研究[J]. 环境科技, 2018, 31(6):6-10.
[7] 张志辉, 郑天龙, 王孝强, 等. 活性炭吸附处理锂电池厂含酯废水及微波再生实验[J]. 中国环境科学, 2014, 34(3):644-649.
[8] 张琳, 蒋枫, 魏雅宁, 等. 纳滤膜法处理阿斯巴甜高含盐有机废水试验[J]. 农业工程学报, 2015, 31(增刊1):276-283.
[9] 张雅琴, 张林, 侯立安. 膜分离技术在放射性废水处理中的应用[J]. 科技导报, 2015, 33(14):24-27.
[10] 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5):1743-1756.
[11] 樊佳炜, 武海霞, 陈卫刚. 氨氮废水的高级氧化处理技术研究进展[J]. 南京工业大学学报(自然科学版), 2020, 42(2):142-151.
[12] 陈利芳, 周腾腾, 符丽纯, 等. 高盐有机化工废水处理技术分析[J]. 广州化工, 2018, 46(5):1-2, 40.
[13] 刘艳明, 高存荣, 魏江波, 等. 煤化工高含盐废水蒸发处理技术进展[J]. 环境工程, 2016, 34(增刊1):432-436.
[14] 王海, 张峰榛, 王成端, 等. MVR技术处理高盐废水工艺的模拟与分析[J]. 环境工程, 2015, 33(10):35-37, 54.
[15] 李济源, 程振杰, 张明, 等. 蒸发法处理不同填埋龄垃圾渗滤液中的有机物[J]. 环境工程学报, 2016, 10(4):1777-1782.
[16] 岳东北, 许玉东, 诸毅, 等. 蒸发过程早期渗滤液中有机酸挥发规律研究[J]. 环境科学, 2007, 28(4):897-901.
[17] 郑伟达, 阮丽. 旋转蒸发-密度法测定啤酒中乙醇[J]. 中国卫生检验杂志, 2014, 24(15):2278-2280.
[18] 敖利, 钟芙蓉, 申婵, 等. 旋转蒸发器制备川芎挥发油羟丙基-β-环糊精包合物的Box-Benhnken响应面法优化[J]. 时珍国医国药, 2018, 29(4):875-879.
[19] 乌云, 杨鲁伟, 张振涛, 等. 高含盐有机废水蒸发浓缩分离特性实验研究[J]. 环境工程, 2015, 33(8):8-12, 31.
[20] 汪正浩, 胡志彬, 杜文凯. 减压蒸发法处理含氰电镀废水的工艺研究[J]. 电镀与精饰, 1987(3):16-19.
[21] 赵宗申, 王晓波, 赵元龙, 等. 氨碱法蒸氨废液自然蒸发试验研究[J]. 当代化工, 2014, 43(7):1178-1180.
[22] 仲涛, 张东洋, 沈光波, 等. MVR蒸发含盐有机废水过程中沸点升高研究[J]. 当代化工, 2016, 45(6):1123-1124, 1127.
[23] 程治良, 全学军, 陈波, 等. 生活垃圾焚烧发电厂渗滤液蒸发浓缩处理[J]. 环境工程学报, 2012, 6(10):3645-3650.
[24] 国家环境保护总局. 水质化学需氧量的测定快速消解分光光度法:HJ/T 399-2007[S]. 北京:国际环境保护总局, 2007.
[25] 国家环境保护总局. 水质全盐量的测定重量法:HJ/T 51-1999[S]. 北京:国家环境保护总局, 1999.
[26] 国家环境保护总局. 水质pH值的测定玻璃电极法:GB 6920-1986[S]. 北京:国家环境保护总局, 1986.
Outlines

/