Review

Research progress on novel variable stiffness technologies for soft robot

  • LIU Chen ,
  • WU Yehui ,
  • LI Bo ,
  • DONG Xufeng ,
  • CHEN Hualing ,
  • CHEN Guimin
Expand
  • 1. State Key Laboratory for Manufacturing System Engineering, Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, China;
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China;
    3. School of Materials Engineering, Dalian University of Technology, Dalian 116000, China

Received date: 2020-01-07

  Revised date: 2020-02-11

  Online published: 2021-09-23

Abstract

Soft robot is a new kind of robot with various freedom of movement and good environmental adaptability. However, low stiffness of the soft robot limits its practical carrying capacity. Therefore, it is meaningful to develop variable stiffness technology for soft robot. This paper summarizes the new variable stiffness technology in recent 5 years, introduces and analyzes its working principles including electrostatic adsorption principle, layer interference principle, self-locking origami mechanism, electrical/magnetorheological principle and minimum potential energy principle, variable stiffness performance and practical application. This paper also discusses the challenges for the current variable stiffness technology and the future development direction, and summarizes the potential research value of the new generation of variable stiffness technology.

Cite this article

LIU Chen , WU Yehui , LI Bo , DONG Xufeng , CHEN Hualing , CHEN Guimin . Research progress on novel variable stiffness technologies for soft robot[J]. Science & Technology Review, 2021 , 39(17) : 69 -81 . DOI: 10.3981/j.issn.1000-7857.2021.17.009

References

[1] Rossiter J, Hauser H. Soft robotics-the next industrial revolution?[Industrial Activities] [J]. IEEE Robotics & Automation Magazine, 2016, 23(3):17-20.
[2] Li T, Li G, Liang Y, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):756-766.
[3] Tse Z T H, Chen Y, Hovet S, et al. Soft robotics in medical applications[J]. Journal of Medical Robotics Research, 2018(8):3-4.
[4] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[5] 赵强, 岳永恒, 等. 仿生连续体机器人的研究现状和展望[J]. 机械设计, 2009, 26(8):1-6.
[6] Saragih R, Tarwidi D. Vibration reduction on single-link flexible manipulator using H ∞ control[J]. Journal of the Indonesian Mathematical Society, 2008, 14(2):2008.
[7] 谢世鹏, 倪风雷, 王海荣, 等. 连续体机器人形状检测方法综述[J]. 机械与电子, 2015(8):70-73.
[8] 赵志刚, 陈志刚. 柔性气动连续体机器人关节结构设计与运动学分析[J]. 机械科学与技术, 2015(2):184-187.
[9] 赵梦凡, 常博, 葛正浩, 等. 软体机器人制造工艺研究进展[J]. 微纳电子技术, 2018, 55(8):606-612.
[10] Stilli A, Grattarola L, Feldmann H, et al. Variable stiffness link (VSL):Toward inherently safe robotic manipulators[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway NJ:IEEE, 2017.
[11] 姚建涛, 陈新博, 陈俊涛, 等. 轮足式仿生软体机器人设计与运动分析[J]. 机械工程学报, 2019, 55(5):27-35.
[12] 赵江波, 薛塔, 王军政. 液压足式机器人单腿变刚度控制弹跳研究[J]. 北京理工大学学报, 2018, 38(10):65-69.
[13] Hao Y F, Wang T M, Xi F, et al. A variable stiffness soft robotic gripper with low-melting-point alloy[C]//Control Conference. Piscataway NJ:IEEE, 2017:6781-6786.
[14] Hao Y F, Wang T M, Wen L. A programmable mechanical freedom and variable stiffness soft actuator with low melting point alloy[C]//International Conference on Intelligent Robotics and Applications. Cham:Springer, 2017:151-161.
[15] 王明义. 基于形状记忆合金的结构刚度控制研究[D]. 南京:南京航空航天大学, 2014.
[16] Alcaide J O, Pearson L, Rentschler M E. Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin[C]//IEEE International Conference on Robotics & Automation. Piscataway NJ:IEEE, 2017:4338-4345.
[17] 刘延斌, 李志松, 底复龑. 基于气动人工肌肉变刚度并联减振系统模型及特性研究[J]. 液压与气动, 2013(11):52-56.
[18] Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming, force chains, and fragile matter[J]. Physical Review Letters, 1998, 81(9):1841-1844.
[19] 徐晓亮, 王永泉, 温坤, 等. 基于纤维包覆式气动结构的柔性手术臂刚度调节性能研究[J]. 机械工程学报, 2018, 54(17):46-52.
[20] 张进华, 洪军, 王韬. 软体机器人关键技术研究[C]//中国机械工程学会机械自动化分会&中国自动化学会制造技术专委会学术工作进展报告. 北京:中国机械工程学会, 2017:99-100.
[21] Persson B N J, Guo J L. Electroadhesion for soft adhesive pads and robotics:Theory and numerical results[J]. Soft Matter, 2019, 15:8032-8039.
[22] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13):1-13.
[23] 顾兴士. 气压调节变刚度柔性仿生机器鱼机理及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[24] 刘延斌, 李志松. 基于气动人工肌肉变刚度并联减振系统模型及特性研究[J]. 液压与气动, 2013(11):52-56.
[25] Li D L, Guo Y, Gao F. Structure design and positive kinematics analysis of medical pneumatic soft robot[C]//International Conference on Mechanical Design. Berlin:Springer, 2018:1257-1271.
[26] Fan J Z, Zhang W, Kong P C, et al. Design and dynamic model of a frog-inspired swimming robot powered by pneumatic muscles[J]. Chinese Journal of Mechanical Engineering, 2017, 30(5):1-10.
[27] 刘晨, 李卓远, 陈花玲. 一种新型柔性静电吸附变刚度结构[J]. 西安交通大学学报, 2018, 52(12):23-29.
[28] 杜姗姗, 孙国辛, 黄呈伟. 飞行吸附机器人的静电吸附单元优化设计研究[J]. 机械制造与自动化, 2015, 44(6):156-159.
[29] Keng H K, Kuppan C R M, Ponnambalam S G. Modeling and simulation of electrostatic adhesion for wall cliambing robot[J]. IEEE International Conference on Robotics and Biomimeticsc, 2011(12):2031-2036.
[30] Asano K, Hatakeyama F, Yatsuzuka K. Fundamental study of an electrostatic chuck for silicon wafer handling[J]. IEEE Transactions on Industry Applications, 2002, 38(3):840-845.
[31] Shintake J, Rosset S, Floreano D, et al. Versatile soft grippers with intrinsic electrostatic adhesion based on multifunctional polymer actuators[J]. Advanced Material, 2016, 28(2):231.
[32] 王黎明, 胡青春. 基于静电吸附原理的双履带爬壁机器人设计[J]. 机械设计, 2012, 29(4):22-25.
[33] Cheng Y, Liu L, Li B, et al. Design, manufacturing and performance study of flexible drive and stiffness adjustable structure/function integration for minimally invasive surgical operation arm[J]. Journal of Mechanical Engineering, 2018, 54(17):53-61.
[34] Li B, Cai Y, Jiang L, et al. A flexible morphing wing by soft wing skin actuation utilizing dielectric elastomer:Experiments and electro-aerodynamic model[J]. Smart Materials and Structures, 2019, 29(1):015031.
[35] Wang T, Zhang J H, Li Y, et al. Electrostatic layer jamming variable stiffness for soft robotics[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2):424-433..
[36] Narang Y, Degirmenci A, Vlassak J J, et al. Transforming the dynamic response of robotic structures and systems through laminar jamming[J]. IEEE Robotics & Automation Letters, 2017, 3(2):688-695.
[37] Ou J, Yao L, Tauber D, et al. Jamsheets:Thin interfaces with tunable stiffness enabled by layer jamming[C]//Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction. Munich:ACM Press, 2014:65-72.
[38] Uddin M Z, Watanabe M, Shirai H, et al. Effects of plasticizers on novel electromechanical actuations with different poly (vinyl chloride) gels[J]. Journal of Polymer Science Part B:Polymer Physics, 2003, 41(18):2119-2127.
[39] Li B, Chang L F, Wang Y J. Modelling of dielectric gel using multi-physics coupling theory[M]//Soft Actuators. Tokyo:Springer, 2019:561-580.
[40] Li B, Chang L F, Asaka K, et al. A multi-physical model of actuation response in dielectric gels[J]. Smart Materials and Structures, 2016, 25(12):125032.
[41] Hirai T, Kobayashi S, Hirai M, et al. Bending induced by creeping of plasticized poly (vinyl chloride) gel[C]//Smart Structures and Materials 2004:Electroactive Polymer Actuators and Devices (EAPAD). Bellingham WA:International Society for Optics and Photonics, 2004, 5385:433-441.
[42] Maeda Y, Li Y, Yasuda K, et al. Development of variable stiffness gel spats for walking assistance[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. Piscataway NJ:IEEE, 2013:5404-5409.
[43] Li Y, Hashimoto M. Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators[J]. Sensors & Actuators A:Physical, 2016, 239:26-44.
[44] Li Y, Maeda Y, Hashimoto M. Lightweight, soft variable stiffness gel spats for walking assistance[J]. International Journal of Advanced Robotic Systems, 2015, 12(12):175.
[45] Shin E J, Park W H, Kim S Y. Fabrication of a highperformance bending actuator made with a PVC gel[J]. Applied Sciences, 8(8):1284-1291.
[46] Shibagaki M, Matsuki T, Hashimoto M. Application of a contraction type PVC gel actuator to brakes[C]//2010 IEEE International Conference on Mechatronics and Automation. Piscataway NJ:IEEE, 2010:39-44..
[47] Felton S, Tolley M, Demaine E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197):644-646.
[48] Kim S J, Lee D Y, Jung G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16):eaar2915.
[49] Li S Y, Fang H B, Sadeghi S, et al. Architected origami materials:How folding creates sophisticated mechanical properties[J]. Advanced Material, 2019, 31:1805282.
[50] Fang H B, Li S Y, Wang K. W. Self-locking degree-4 vertex origami structures[J]. Proceedings Mathematical Physical & Engineering Sciences, 2016, 472(2195):20160682.
[51] Fouhey D F, Gupta A, Hebert M. Unfolding an indoor origami world[C]//European Conference on Computer Vision. Berlin:Springer International Publishing, 2014:687-702.
[52] Wang Z J, Jing L Q, Yao K, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27):1700412.
[53] Kalina K A, Brummund J, Metsch P, et al. Microscale modeling and simulation of magnetorheological elastomers[J]. 2017, 17(1):27-30.
[54] Takemura K, Yokota S, Edamura K. Development and control of a micro artificial muscle cell using electroconjugate fluid[J]. Sensors & Actuators A:Physical, 2007, 133(2):493-499.
[55] Schiava N D, Le M Q, Galineau J, al. Influence of plasticizers on the electromechanical behavior of a P(VDF-TrFE-CTFE) terpolymer:Toward a high performance of electrostrictive blends[J]. Journal of Polymer Science B:Polymer Physics, 2017, 55(4):355-369.
[56] Yao J R, Sun Y Y, Wang Y, et al. Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix[J]. Composites Science & Technology, 2018, 162:170-179.
[57] Malaeke H, Moeenfard H, Ghasemi A H, et al. Vibration suppression of MR sandwich beams based on fuzzy logic[C]//Conference Proceedings of the Society for Experimental Mechanics Series. Cham:Springer, 2017:227-238.
[58] Bai J F, Fu J, Lai J J, et al. Time-delay analysis of a magnetorheological elastomer actuator for semi-active control[C]//2017 29th Chinese Control and Decision Conference (CCDC). Piscataway NJ:IEEE,2017:366-370.
[59] Song W Z, Zhou H, Zhao Y Q, et al. Study of variable stiffness dynamic vibration absorber based on magnetorheological elastomer[J]. Ship Science and Technology, 2015, 37(11):64-68.
[60] 高玲香, 赵晓鹏. 淀粉/明胶/甘油含水电流变胶体的电场响应行为[J]. 功能材料, 2014, 35(4):426-428.
[61] Tu F Q, Liu X S, Mao Y, et al. Recent progress and application of electrorheological fluids[J] Materials Review, 2014, 28(11):66-68.
[62] Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science, 1995, 58(4):787-792.
[63] Behrooz M, Wang X, Gordaninejad F. Control of structures featuring a new MRE isolator system[C]//Active and Passive Smart Structures and Integrated Systems 2012. Bellingham WA:International Society for Optics and Photonics, 2012, 8341:83411I.
[64] Lei X H. Design and experimental research of self-supplied electrorheological elastomer shock absorber[D]. Xiangtan:Xiangtan University, 2015.
[65] Ma N, Zhang ZQ, Dong X F, et al. Dynamic viscoelasticity and phenomenological model of electrorheological elastomers[J]. Journal of Applied Polymer Science, 2017, 134(41):45407.
[66] Gandhi, M. V, Thompson, B. S, Choi, S. B, et al. Electro-rheological-fluid-based articulating robotic systems[J]. Journal of Mechanical Design, 1989, 111(3):328-336.
[67] 黄冉, 周前祥, 王一豪. 基于电流变液的机械臂控制系统设计与仿真[J]. 机械设计与制造, 2012(12):10-12.
[68] Kofod G, Paajanen M, Bauer S. Self-organized minimum-energy structures for dielectric elastomer actuators[J]. Applied Physics A, 2006(85):141-143.
[69] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation[J]. Appllied Physics Letters, 2007(90):081916.
[70] Li W B, Zhang W M, Zou H X, et al. A novel variable stiffness mechanism for dielectric elastomer actuators[J]. Smart Materials and Structures, 2017, 26(8):085033.
[71] Li W B, Zhang W M, Zou H X, et al. Bioinspired variable stiffness dielectric elastomer actuators with large and tunable load capacity[J]. Soft Robotics, 2019, 6(5):631-643.
[72] Shintake J, Schubert B, Rosset S, et al. Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2015:1097-1102.
Outlines

/