[1] Rossiter J, Hauser H. Soft robotics-the next industrial revolution?[Industrial Activities] [J]. IEEE Robotics & Automation Magazine, 2016, 23(3):17-20.
[2] Li T, Li G, Liang Y, et al. Review of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):756-766.
[3] Tse Z T H, Chen Y, Hovet S, et al. Soft robotics in medical applications[J]. Journal of Medical Robotics Research, 2018(8):3-4.
[4] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[5] 赵强, 岳永恒, 等. 仿生连续体机器人的研究现状和展望[J]. 机械设计, 2009, 26(8):1-6.
[6] Saragih R, Tarwidi D. Vibration reduction on single-link flexible manipulator using H ∞ control[J]. Journal of the Indonesian Mathematical Society, 2008, 14(2):2008.
[7] 谢世鹏, 倪风雷, 王海荣, 等. 连续体机器人形状检测方法综述[J]. 机械与电子, 2015(8):70-73.
[8] 赵志刚, 陈志刚. 柔性气动连续体机器人关节结构设计与运动学分析[J]. 机械科学与技术, 2015(2):184-187.
[9] 赵梦凡, 常博, 葛正浩, 等. 软体机器人制造工艺研究进展[J]. 微纳电子技术, 2018, 55(8):606-612.
[10] Stilli A, Grattarola L, Feldmann H, et al. Variable stiffness link (VSL):Toward inherently safe robotic manipulators[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway NJ:IEEE, 2017.
[11] 姚建涛, 陈新博, 陈俊涛, 等. 轮足式仿生软体机器人设计与运动分析[J]. 机械工程学报, 2019, 55(5):27-35.
[12] 赵江波, 薛塔, 王军政. 液压足式机器人单腿变刚度控制弹跳研究[J]. 北京理工大学学报, 2018, 38(10):65-69.
[13] Hao Y F, Wang T M, Xi F, et al. A variable stiffness soft robotic gripper with low-melting-point alloy[C]//Control Conference. Piscataway NJ:IEEE, 2017:6781-6786.
[14] Hao Y F, Wang T M, Wen L. A programmable mechanical freedom and variable stiffness soft actuator with low melting point alloy[C]//International Conference on Intelligent Robotics and Applications. Cham:Springer, 2017:151-161.
[15] 王明义. 基于形状记忆合金的结构刚度控制研究[D]. 南京:南京航空航天大学, 2014.
[16] Alcaide J O, Pearson L, Rentschler M E. Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin[C]//IEEE International Conference on Robotics & Automation. Piscataway NJ:IEEE, 2017:4338-4345.
[17] 刘延斌, 李志松, 底复龑. 基于气动人工肌肉变刚度并联减振系统模型及特性研究[J]. 液压与气动, 2013(11):52-56.
[18] Cates M E, Wittmer J P, Bouchaud J P, et al. Jamming, force chains, and fragile matter[J]. Physical Review Letters, 1998, 81(9):1841-1844.
[19] 徐晓亮, 王永泉, 温坤, 等. 基于纤维包覆式气动结构的柔性手术臂刚度调节性能研究[J]. 机械工程学报, 2018, 54(17):46-52.
[20] 张进华, 洪军, 王韬. 软体机器人关键技术研究[C]//中国机械工程学会机械自动化分会&中国自动化学会制造技术专委会学术工作进展报告. 北京:中国机械工程学会, 2017:99-100.
[21] Persson B N J, Guo J L. Electroadhesion for soft adhesive pads and robotics:Theory and numerical results[J]. Soft Matter, 2019, 15:8032-8039.
[22] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13):1-13.
[23] 顾兴士. 气压调节变刚度柔性仿生机器鱼机理及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[24] 刘延斌, 李志松. 基于气动人工肌肉变刚度并联减振系统模型及特性研究[J]. 液压与气动, 2013(11):52-56.
[25] Li D L, Guo Y, Gao F. Structure design and positive kinematics analysis of medical pneumatic soft robot[C]//International Conference on Mechanical Design. Berlin:Springer, 2018:1257-1271.
[26] Fan J Z, Zhang W, Kong P C, et al. Design and dynamic model of a frog-inspired swimming robot powered by pneumatic muscles[J]. Chinese Journal of Mechanical Engineering, 2017, 30(5):1-10.
[27] 刘晨, 李卓远, 陈花玲. 一种新型柔性静电吸附变刚度结构[J]. 西安交通大学学报, 2018, 52(12):23-29.
[28] 杜姗姗, 孙国辛, 黄呈伟. 飞行吸附机器人的静电吸附单元优化设计研究[J]. 机械制造与自动化, 2015, 44(6):156-159.
[29] Keng H K, Kuppan C R M, Ponnambalam S G. Modeling and simulation of electrostatic adhesion for wall cliambing robot[J]. IEEE International Conference on Robotics and Biomimeticsc, 2011(12):2031-2036.
[30] Asano K, Hatakeyama F, Yatsuzuka K. Fundamental study of an electrostatic chuck for silicon wafer handling[J]. IEEE Transactions on Industry Applications, 2002, 38(3):840-845.
[31] Shintake J, Rosset S, Floreano D, et al. Versatile soft grippers with intrinsic electrostatic adhesion based on multifunctional polymer actuators[J]. Advanced Material, 2016, 28(2):231.
[32] 王黎明, 胡青春. 基于静电吸附原理的双履带爬壁机器人设计[J]. 机械设计, 2012, 29(4):22-25.
[33] Cheng Y, Liu L, Li B, et al. Design, manufacturing and performance study of flexible drive and stiffness adjustable structure/function integration for minimally invasive surgical operation arm[J]. Journal of Mechanical Engineering, 2018, 54(17):53-61.
[34] Li B, Cai Y, Jiang L, et al. A flexible morphing wing by soft wing skin actuation utilizing dielectric elastomer:Experiments and electro-aerodynamic model[J]. Smart Materials and Structures, 2019, 29(1):015031.
[35] Wang T, Zhang J H, Li Y, et al. Electrostatic layer jamming variable stiffness for soft robotics[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2):424-433..
[36] Narang Y, Degirmenci A, Vlassak J J, et al. Transforming the dynamic response of robotic structures and systems through laminar jamming[J]. IEEE Robotics & Automation Letters, 2017, 3(2):688-695.
[37] Ou J, Yao L, Tauber D, et al. Jamsheets:Thin interfaces with tunable stiffness enabled by layer jamming[C]//Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction. Munich:ACM Press, 2014:65-72.
[38] Uddin M Z, Watanabe M, Shirai H, et al. Effects of plasticizers on novel electromechanical actuations with different poly (vinyl chloride) gels[J]. Journal of Polymer Science Part B:Polymer Physics, 2003, 41(18):2119-2127.
[39] Li B, Chang L F, Wang Y J. Modelling of dielectric gel using multi-physics coupling theory[M]//Soft Actuators. Tokyo:Springer, 2019:561-580.
[40] Li B, Chang L F, Asaka K, et al. A multi-physical model of actuation response in dielectric gels[J]. Smart Materials and Structures, 2016, 25(12):125032.
[41] Hirai T, Kobayashi S, Hirai M, et al. Bending induced by creeping of plasticized poly (vinyl chloride) gel[C]//Smart Structures and Materials 2004:Electroactive Polymer Actuators and Devices (EAPAD). Bellingham WA:International Society for Optics and Photonics, 2004, 5385:433-441.
[42] Maeda Y, Li Y, Yasuda K, et al. Development of variable stiffness gel spats for walking assistance[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. Piscataway NJ:IEEE, 2013:5404-5409.
[43] Li Y, Hashimoto M. Design and prototyping of a novel lightweight walking assist wear using PVC gel soft actuators[J]. Sensors & Actuators A:Physical, 2016, 239:26-44.
[44] Li Y, Maeda Y, Hashimoto M. Lightweight, soft variable stiffness gel spats for walking assistance[J]. International Journal of Advanced Robotic Systems, 2015, 12(12):175.
[45] Shin E J, Park W H, Kim S Y. Fabrication of a highperformance bending actuator made with a PVC gel[J]. Applied Sciences, 8(8):1284-1291.
[46] Shibagaki M, Matsuki T, Hashimoto M. Application of a contraction type PVC gel actuator to brakes[C]//2010 IEEE International Conference on Mechatronics and Automation. Piscataway NJ:IEEE, 2010:39-44..
[47] Felton S, Tolley M, Demaine E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197):644-646.
[48] Kim S J, Lee D Y, Jung G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16):eaar2915.
[49] Li S Y, Fang H B, Sadeghi S, et al. Architected origami materials:How folding creates sophisticated mechanical properties[J]. Advanced Material, 2019, 31:1805282.
[50] Fang H B, Li S Y, Wang K. W. Self-locking degree-4 vertex origami structures[J]. Proceedings Mathematical Physical & Engineering Sciences, 2016, 472(2195):20160682.
[51] Fouhey D F, Gupta A, Hebert M. Unfolding an indoor origami world[C]//European Conference on Computer Vision. Berlin:Springer International Publishing, 2014:687-702.
[52] Wang Z J, Jing L Q, Yao K, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27):1700412.
[53] Kalina K A, Brummund J, Metsch P, et al. Microscale modeling and simulation of magnetorheological elastomers[J]. 2017, 17(1):27-30.
[54] Takemura K, Yokota S, Edamura K. Development and control of a micro artificial muscle cell using electroconjugate fluid[J]. Sensors & Actuators A:Physical, 2007, 133(2):493-499.
[55] Schiava N D, Le M Q, Galineau J, al. Influence of plasticizers on the electromechanical behavior of a P(VDF-TrFE-CTFE) terpolymer:Toward a high performance of electrostrictive blends[J]. Journal of Polymer Science B:Polymer Physics, 2017, 55(4):355-369.
[56] Yao J R, Sun Y Y, Wang Y, et al. Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix[J]. Composites Science & Technology, 2018, 162:170-179.
[57] Malaeke H, Moeenfard H, Ghasemi A H, et al. Vibration suppression of MR sandwich beams based on fuzzy logic[C]//Conference Proceedings of the Society for Experimental Mechanics Series. Cham:Springer, 2017:227-238.
[58] Bai J F, Fu J, Lai J J, et al. Time-delay analysis of a magnetorheological elastomer actuator for semi-active control[C]//2017 29th Chinese Control and Decision Conference (CCDC). Piscataway NJ:IEEE,2017:366-370.
[59] Song W Z, Zhou H, Zhao Y Q, et al. Study of variable stiffness dynamic vibration absorber based on magnetorheological elastomer[J]. Ship Science and Technology, 2015, 37(11):64-68.
[60] 高玲香, 赵晓鹏. 淀粉/明胶/甘油含水电流变胶体的电场响应行为[J]. 功能材料, 2014, 35(4):426-428.
[61] Tu F Q, Liu X S, Mao Y, et al. Recent progress and application of electrorheological fluids[J] Materials Review, 2014, 28(11):66-68.
[62] Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science, 1995, 58(4):787-792.
[63] Behrooz M, Wang X, Gordaninejad F. Control of structures featuring a new MRE isolator system[C]//Active and Passive Smart Structures and Integrated Systems 2012. Bellingham WA:International Society for Optics and Photonics, 2012, 8341:83411I.
[64] Lei X H. Design and experimental research of self-supplied electrorheological elastomer shock absorber[D]. Xiangtan:Xiangtan University, 2015.
[65] Ma N, Zhang ZQ, Dong X F, et al. Dynamic viscoelasticity and phenomenological model of electrorheological elastomers[J]. Journal of Applied Polymer Science, 2017, 134(41):45407.
[66] Gandhi, M. V, Thompson, B. S, Choi, S. B, et al. Electro-rheological-fluid-based articulating robotic systems[J]. Journal of Mechanical Design, 1989, 111(3):328-336.
[67] 黄冉, 周前祥, 王一豪. 基于电流变液的机械臂控制系统设计与仿真[J]. 机械设计与制造, 2012(12):10-12.
[68] Kofod G, Paajanen M, Bauer S. Self-organized minimum-energy structures for dielectric elastomer actuators[J]. Applied Physics A, 2006(85):141-143.
[69] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation[J]. Appllied Physics Letters, 2007(90):081916.
[70] Li W B, Zhang W M, Zou H X, et al. A novel variable stiffness mechanism for dielectric elastomer actuators[J]. Smart Materials and Structures, 2017, 26(8):085033.
[71] Li W B, Zhang W M, Zou H X, et al. Bioinspired variable stiffness dielectric elastomer actuators with large and tunable load capacity[J]. Soft Robotics, 2019, 6(5):631-643.
[72] Shintake J, Schubert B, Rosset S, et al. Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2015:1097-1102.