Review

The progress of treatment methods of dye wastewater

  • CUI Yumin ,
  • YIN Rongcan
Expand
  • Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China

Received date: 2019-06-24

  Revised date: 2019-12-23

  Online published: 2021-10-09

Abstract

The rapid development of dyestuff industry increases the emissions of the dye wastewater, gradually aggravating the pollution in the environment and posing a great threat to the human health. So it is important to develop effective methods to clean the dye wastewater. Various new materials and new processes are involved in physical methods (the activated carbon adsorption method, the membrane separation technology, and the magnetic separation technology), chemical methods (the electrochemical process, the chemical oxidation process) and biological methods (the dye wastewater treatment by fungi, the dye wastewater treatment by bacteria), as reviewed in this paper, focusing on the physical methods and the chemical methods. The main problems in the process of the dye wastewater treatment and the development trend are put forward.

Cite this article

CUI Yumin , YIN Rongcan . The progress of treatment methods of dye wastewater[J]. Science & Technology Review, 2021 , 39(18) : 79 -87 . DOI: 10.3981/j.issn.1000-7857.2021.18.011

References

[1] 石泰山. 印染废水处理及其资源化利用[J]. 印染, 2013(23):49-52.
[2] 罗灯洪, 郑庆康, 苏祏, 等. 活性染色废水的均相催化臭氧脱色[J]. 印染, 2010(21):8-13.
[3] Barka N, Qourzal S, Assabbane A, et al. Factors influencing the photocatalytic degradation of Rhodamine B by TiO 2-coated-wovenpaper[J]. Journal of Photochemistry and Photobiology A:Chemis Try, 2008, 195(2/3):346-351.
[4] Wang H Y, Niu J F, Long X X, et al. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions[J]. Ultrasonics Sonochemistry, 2008, 15(4):386-392.
[5] Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent[J]. Chemosp Here, 2004, 55:35-43.
[6] Brillas E, Boye B, Banos M A, et al. Electrochemical degradation of chlorop Henoxy and chlorobenzoic herbicides in acidic aqueous medium by he. Eroxi-coagulation method[J]. Chemosp Here, 2003, 51:227-235.
[7] Ventura A, Jacquet G, Bermond A, et al. Electro-chemical generation of the Fenton's reagent application to atrazine degradation[J]. Water research, 2002, 36:517-3522.
[8] Lage Liane E C, Geraldo L Sant Anna Jr, Nobrega R. Molecular weight distribution of chlorolignin in bleached kraft effluent by GPC and ultrafiltration[J]. Bioresource Technology, 1999, 68:63-70.
[9] Isah A U, Abdulraheem G, Bala S, et al. Kinetics, equilibrium and thermodynamics studies of C.I.Reactive Blue 19 dye adsorption on coconut shell based activated carbon[J]. International Biodeterioration & Biodegradation, 2015, 102:265-273.
[10] Hadi P, Yeung K Y, Barford J, et al. Significance of "effective" surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules[J]. Journal of Environmental Chemical Engineering, 2015, 3(2):1029-1037.
[11] 徐恩兵, 李坤权, 朱志强, 等. 双孔介孔碳的合成及其对亚甲基蓝的吸附[J]. 环境化学, 2015, 34(1):137-143.
[12] 张晋峰, 张莹琪. 花生壳活性炭吸附染料废水中结晶紫的研究[J]. 节水灌溉, 2015(4):52-54.
[13] 淡玄玄, 李小敏. 光波辅助核桃壳活性炭吸附孔雀石绿性能的研究[J]. 人工晶体学报, 2018, 47(1):137-143.
[14] 刘恩华, 王家富, 魏飞. 管式超滤+纳滤技术处理分散染料废水中试研究[J]. 水处理技术, 2015, 41(2):96-99.
[15] Dong Y N, Su Y L, Chen W J, et al. Ultra-filtration enhanced with activated carbon adsorption for efficient dye removal from aqueous solution[J]. Chinese Journal of Chemical Engineering, 2011, 19(5):863-869.
[16] Soma C, Rumeau M, Sergent C. Use of mineral membranes in the treatment of textiles effluents[C]//Pore 1st International Conference of Inorganic Membranes, Montpeller, 1989:523-526.
[17] 刘艳, 解立平, 费学宁, 等.一体式光催化-膜分离反应器处理酸性红B染料废水[J]. 天津工业大学学报, 2011, 30(2):60-64.
[18] 张秀蓉, 龚继来, 曾光明, 等. 磁性氧化石墨烯制备及去除水中刚果红的研究[J]. 中国环境科学, 2013, 33(8):1379-1385.
[19] Bonetto L R, Ferrarini F, de Marco C, et al. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent[J]. Journal of Water Process Engineering, 2015(6):11-20.
[20] 陈文松, 韦朝海. 磁种混凝-高梯度磁分离技术的印染废水处理[J]. 水处理技术, 2006, 32(11):58-60, 65.
[21] 王爱民, 杨立红, 张素娟. 电化学方法治理含染料废水的现状与进展[J]. 工业水处理, 2001, 21(8):4-7.
[22] 杨蕴哲, 杨卫身, 杨凤林, 等. 电化学法处理高含盐活性艳蓝KN-R废水的研究[J]. 化工环保, 2005, 25(3):178-181.
[23] Kariyajjanavar P, Jogttappa N, Nayaka Y A. Studies on degradation of reactive textile dyes solution by electrochemical method[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):952-961.
[24] Ozcan A, Sahin Y, Savas K A, et al. Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue-3 in aqueous medium[J]. Journal of Electroanalytical Chemistry, 2008, 616(1/2):71-78.
[25] Yao Ye, Li Kan, Chen Si, et al. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode[J]. Chemical Engineering Journal, 2012, 187:29-35.
[26] Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of chlorop Henols by means of advanced oxidation processes:A general review[J]. Applied Catalysis B:Environmental, 2004, 47:219-256.
[27] Wang R, Chen C L, Gratzl J S. Dechlorination of chlorop Henols found in pulp bleach plant E-1 effluents by advanced oxidation processes[J]. Bioresource Technology, 2005, 96:897-906.
[28] Kusvuran E, Gulnaz O, Samil A, et al. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes[J]. Journal of Hazardous Materials, 2011, 186(1):133-143.
[29] 赵俊娜, 李贵霞, 刘曼, 等. 臭氧氧化法处理模拟染料废水影响因素及降解动力学研究[J]. 河北科技大学学报, 2014, 35(3):296-302.
[30] Sun S P, Li C J, Sun J H, et al. Decolorization of an azodye Orange G in aqueous solution by Fenton oxidation process:Effect of system parameters and kinetic study[J]. Journal of Hazardous Materials, 2009, 161(2/3):1052-1057.
[31] Kang S F, Liao C H, Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process[J]. Chemosphere, 2002, 46(6):923-928.
[32] Zhang J, Wang S, Guo Y, et al. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater:Influence of NaOH on the organic decomposition[J]. Journal of environmental sciences(China), 2013, 25(8):1583-1591.
[33] 崔玉民, 白翠冰, 苗慧, 等. 石墨相氮化碳与半导体光催化剂复合研究进展[J]. 水处理技术, 2018, 44(9):1-6.
[34] 崔玉民, 殷榕灿, 师瑞娟, 等. CNB-BA光催化剂的制备及其性能研究[J]. 环境科学与技术, 2019, 42(3):129-133.
[35] Sun J H, Dong S Y, Wang Y K. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. Journal of Hazardous Materials, 2009, 172(2/3):1520-1526.
[36] Aber S, Mehrizade H, Khataee A R. Preparation of ZnS nanocrystal and inestigation of its photocatalytic activity in removal of CI acid baue-9 from contaminated water[J]. Desalination and Water Treatment, 2011, 28(1/2):92-96.
[37] 崔玉民, 孙倩, 李慧泉, 等. C3N4/ZnO/Fe2O3复合光催化剂的制备及性能[J]. 阜阳师范学院学报(自然科学版), 2015, 32(1):24-28.
[38] 张文保, 崔玉民, 李慧泉, 等. Bi2O3/g-C3N4复合催化剂的制备及其性能研究[J]. 阜阳师范学院学报(自然科学版), 2015, 32(1):29-34.
[39] Cao J, Xu B Y, Lin H L, et al. Novel heterostructure Bi2S3/BiOI photocatalyst:Facile preparation, characterization and visible light photocatalytic performance[J]. Dalton Transactions, 2012, 41(37):11482-11490.
[40] Li H Q, Cui Y M, Hong W S. High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red[J]. Applied Surface Science, 2013, 264(6):581-588.
[41] Cao J, Xu B Y, Lin H L, et al. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal[J]. Chemical Engineering Journal, 2012, 185/186(4):91-99.
[42] Liu G M, Zhao J C, Hidaka H. ESR spin-trapping detection of radical intermediates in the TiO 2-assisted photooxidation of sulforhodamine B under visible irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 133(1/2):83-88.
[43] Liu G M, Li X Z, Zhao J C. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination:An experimental and theoretical examination[J]. Journal of Molecular Catalysis A:Chemical, 2000, 153(1/2):221-229.
[44] Li Huiquan, Liu Yuxing, Cui Yumin, et al. Facile synthesis and enhanced visible-light photoactivity of DyVO 4/g-C3N4I composite semiconductors[J]. Applied Catalysis B:Environmental, 2016, 183:426-432.
[45] Fettkenhauer Ch, Clavel G, Kailasam K, et al. Facile synthesis of new, highly efficient SnO2/carbon nitride composite photocatalysts for the hydrogen evolution reaction[J]. Green Chemistry, 2015, 17(6):3350-3361.
[46] Kumar S, Baruah A, Tonda S, et al. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visiblelight responsive photocatalysis[J]. Nanoscale, 2014, 6(9):4830-4842.
[47] He Y M, Zhao L H, Wang Y J, et al. Recent advances on the development of antibacterial polysaccharidebased materials[J]. Chemical Engineering Journal, 2011, 169:50-57.
[48] He Y M, Cai J, Li T T, et al. Synthesis characterization,and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation[J]. Industrial & Engineering Chemistry Research, 2012, 51:14729-14737.
[49] Zhang J S, Zhang M W, Yang C, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Advanced Materials, 2014, 26:4121-4125.
[50] Zhou S, Liu Y, Li J M, et al. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO[J]. Applied Catalysis B:Environmental, 2014, 158/159:20-29.
[51] 梁波, 徐金球, 关杰, 等. 生物法处理印染废水的研究进展[J]. 化工环保, 2015, 35(3):259-266.
[52] 陈文华, 李刚, 许方程, 等. 染料废水污染现状及处理方法研究进展[J]. 浙江农业科学, 2014(2):264-269.
[53] Robinson T, Mcmullan G, Marchant R, et al. Remediation of dyes in textile effluent, a critical review on current treatment technologies with a proposed alternative[J]. Bioresource Technology, 2001, 77:247-255.
[54] 徐文东, 文湘华. 微生物在含染料废水处理中的应用[J]. 环境污染治理技术与设备, 2000, 1(2):9-16.
[55] Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters:A review[J]. Bioresource Technology, 2001, 79:251-262.
[56] Glenn J K, Gold M H. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1983, 45:1741-1747.
[57] Martins M A M, Ferreira I C, Santos I M, et al. Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium[J]. Journal of Biotechnology, 2001, 89:91-98.
[58] Radha K V, Regupathi I, Arunagiri A, et al. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics[J]. Process Biochemistry, 2005, 40:3337-3345.
[59] Khalid A, Arshad M, Crowley D E. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains[J]. Applied Microbiology and Biotechnology, 2008, 78:361-369.
[60] Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile wastewater using whole bacterial cells:A review[J]. Dyes and Pigments, 2003, 58:179-196.
Outlines

/