[1] 石泰山. 印染废水处理及其资源化利用[J]. 印染, 2013(23):49-52.
[2] 罗灯洪, 郑庆康, 苏祏, 等. 活性染色废水的均相催化臭氧脱色[J]. 印染, 2010(21):8-13.
[3] Barka N, Qourzal S, Assabbane A, et al. Factors influencing the photocatalytic degradation of Rhodamine B by TiO 2-coated-wovenpaper[J]. Journal of Photochemistry and Photobiology A:Chemis Try, 2008, 195(2/3):346-351.
[4] Wang H Y, Niu J F, Long X X, et al. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions[J]. Ultrasonics Sonochemistry, 2008, 15(4):386-392.
[5] Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent[J]. Chemosp Here, 2004, 55:35-43.
[6] Brillas E, Boye B, Banos M A, et al. Electrochemical degradation of chlorop Henoxy and chlorobenzoic herbicides in acidic aqueous medium by he. Eroxi-coagulation method[J]. Chemosp Here, 2003, 51:227-235.
[7] Ventura A, Jacquet G, Bermond A, et al. Electro-chemical generation of the Fenton's reagent application to atrazine degradation[J]. Water research, 2002, 36:517-3522.
[8] Lage Liane E C, Geraldo L Sant Anna Jr, Nobrega R. Molecular weight distribution of chlorolignin in bleached kraft effluent by GPC and ultrafiltration[J]. Bioresource Technology, 1999, 68:63-70.
[9] Isah A U, Abdulraheem G, Bala S, et al. Kinetics, equilibrium and thermodynamics studies of C.I.Reactive Blue 19 dye adsorption on coconut shell based activated carbon[J]. International Biodeterioration & Biodegradation, 2015, 102:265-273.
[10] Hadi P, Yeung K Y, Barford J, et al. Significance of "effective" surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules[J]. Journal of Environmental Chemical Engineering, 2015, 3(2):1029-1037.
[11] 徐恩兵, 李坤权, 朱志强, 等. 双孔介孔碳的合成及其对亚甲基蓝的吸附[J]. 环境化学, 2015, 34(1):137-143.
[12] 张晋峰, 张莹琪. 花生壳活性炭吸附染料废水中结晶紫的研究[J]. 节水灌溉, 2015(4):52-54.
[13] 淡玄玄, 李小敏. 光波辅助核桃壳活性炭吸附孔雀石绿性能的研究[J]. 人工晶体学报, 2018, 47(1):137-143.
[14] 刘恩华, 王家富, 魏飞. 管式超滤+纳滤技术处理分散染料废水中试研究[J]. 水处理技术, 2015, 41(2):96-99.
[15] Dong Y N, Su Y L, Chen W J, et al. Ultra-filtration enhanced with activated carbon adsorption for efficient dye removal from aqueous solution[J]. Chinese Journal of Chemical Engineering, 2011, 19(5):863-869.
[16] Soma C, Rumeau M, Sergent C. Use of mineral membranes in the treatment of textiles effluents[C]//Pore 1st International Conference of Inorganic Membranes, Montpeller, 1989:523-526.
[17] 刘艳, 解立平, 费学宁, 等.一体式光催化-膜分离反应器处理酸性红B染料废水[J]. 天津工业大学学报, 2011, 30(2):60-64.
[18] 张秀蓉, 龚继来, 曾光明, 等. 磁性氧化石墨烯制备及去除水中刚果红的研究[J]. 中国环境科学, 2013, 33(8):1379-1385.
[19] Bonetto L R, Ferrarini F, de Marco C, et al. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent[J]. Journal of Water Process Engineering, 2015(6):11-20.
[20] 陈文松, 韦朝海. 磁种混凝-高梯度磁分离技术的印染废水处理[J]. 水处理技术, 2006, 32(11):58-60, 65.
[21] 王爱民, 杨立红, 张素娟. 电化学方法治理含染料废水的现状与进展[J]. 工业水处理, 2001, 21(8):4-7.
[22] 杨蕴哲, 杨卫身, 杨凤林, 等. 电化学法处理高含盐活性艳蓝KN-R废水的研究[J]. 化工环保, 2005, 25(3):178-181.
[23] Kariyajjanavar P, Jogttappa N, Nayaka Y A. Studies on degradation of reactive textile dyes solution by electrochemical method[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):952-961.
[24] Ozcan A, Sahin Y, Savas K A, et al. Carbon sponge as a new cathode material for the electro-Fenton process:Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue-3 in aqueous medium[J]. Journal of Electroanalytical Chemistry, 2008, 616(1/2):71-78.
[25] Yao Ye, Li Kan, Chen Si, et al. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode[J]. Chemical Engineering Journal, 2012, 187:29-35.
[26] Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of chlorop Henols by means of advanced oxidation processes:A general review[J]. Applied Catalysis B:Environmental, 2004, 47:219-256.
[27] Wang R, Chen C L, Gratzl J S. Dechlorination of chlorop Henols found in pulp bleach plant E-1 effluents by advanced oxidation processes[J]. Bioresource Technology, 2005, 96:897-906.
[28] Kusvuran E, Gulnaz O, Samil A, et al. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes[J]. Journal of Hazardous Materials, 2011, 186(1):133-143.
[29] 赵俊娜, 李贵霞, 刘曼, 等. 臭氧氧化法处理模拟染料废水影响因素及降解动力学研究[J]. 河北科技大学学报, 2014, 35(3):296-302.
[30] Sun S P, Li C J, Sun J H, et al. Decolorization of an azodye Orange G in aqueous solution by Fenton oxidation process:Effect of system parameters and kinetic study[J]. Journal of Hazardous Materials, 2009, 161(2/3):1052-1057.
[31] Kang S F, Liao C H, Chen M C. Pre-oxidation and coagulation of textile wastewater by the Fenton process[J]. Chemosphere, 2002, 46(6):923-928.
[32] Zhang J, Wang S, Guo Y, et al. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater:Influence of NaOH on the organic decomposition[J]. Journal of environmental sciences(China), 2013, 25(8):1583-1591.
[33] 崔玉民, 白翠冰, 苗慧, 等. 石墨相氮化碳与半导体光催化剂复合研究进展[J]. 水处理技术, 2018, 44(9):1-6.
[34] 崔玉民, 殷榕灿, 师瑞娟, 等. CNB-BA光催化剂的制备及其性能研究[J]. 环境科学与技术, 2019, 42(3):129-133.
[35] Sun J H, Dong S Y, Wang Y K. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. Journal of Hazardous Materials, 2009, 172(2/3):1520-1526.
[36] Aber S, Mehrizade H, Khataee A R. Preparation of ZnS nanocrystal and inestigation of its photocatalytic activity in removal of CI acid baue-9 from contaminated water[J]. Desalination and Water Treatment, 2011, 28(1/2):92-96.
[37] 崔玉民, 孙倩, 李慧泉, 等. C3N4/ZnO/Fe2O3复合光催化剂的制备及性能[J]. 阜阳师范学院学报(自然科学版), 2015, 32(1):24-28.
[38] 张文保, 崔玉民, 李慧泉, 等. Bi2O3/g-C3N4复合催化剂的制备及其性能研究[J]. 阜阳师范学院学报(自然科学版), 2015, 32(1):29-34.
[39] Cao J, Xu B Y, Lin H L, et al. Novel heterostructure Bi2S3/BiOI photocatalyst:Facile preparation, characterization and visible light photocatalytic performance[J]. Dalton Transactions, 2012, 41(37):11482-11490.
[40] Li H Q, Cui Y M, Hong W S. High photocatalytic performance of BiOI/Bi2WO6 toward toluene and Reactive Brilliant Red[J]. Applied Surface Science, 2013, 264(6):581-588.
[41] Cao J, Xu B Y, Lin H L, et al. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal[J]. Chemical Engineering Journal, 2012, 185/186(4):91-99.
[42] Liu G M, Zhao J C, Hidaka H. ESR spin-trapping detection of radical intermediates in the TiO 2-assisted photooxidation of sulforhodamine B under visible irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 133(1/2):83-88.
[43] Liu G M, Li X Z, Zhao J C. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination:An experimental and theoretical examination[J]. Journal of Molecular Catalysis A:Chemical, 2000, 153(1/2):221-229.
[44] Li Huiquan, Liu Yuxing, Cui Yumin, et al. Facile synthesis and enhanced visible-light photoactivity of DyVO 4/g-C3N4I composite semiconductors[J]. Applied Catalysis B:Environmental, 2016, 183:426-432.
[45] Fettkenhauer Ch, Clavel G, Kailasam K, et al. Facile synthesis of new, highly efficient SnO2/carbon nitride composite photocatalysts for the hydrogen evolution reaction[J]. Green Chemistry, 2015, 17(6):3350-3361.
[46] Kumar S, Baruah A, Tonda S, et al. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visiblelight responsive photocatalysis[J]. Nanoscale, 2014, 6(9):4830-4842.
[47] He Y M, Zhao L H, Wang Y J, et al. Recent advances on the development of antibacterial polysaccharidebased materials[J]. Chemical Engineering Journal, 2011, 169:50-57.
[48] He Y M, Cai J, Li T T, et al. Synthesis characterization,and activity evaluation of DyVO4/g-C3N4 composites under visible-light irradiation[J]. Industrial & Engineering Chemistry Research, 2012, 51:14729-14737.
[49] Zhang J S, Zhang M W, Yang C, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Advanced Materials, 2014, 26:4121-4125.
[50] Zhou S, Liu Y, Li J M, et al. Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO[J]. Applied Catalysis B:Environmental, 2014, 158/159:20-29.
[51] 梁波, 徐金球, 关杰, 等. 生物法处理印染废水的研究进展[J]. 化工环保, 2015, 35(3):259-266.
[52] 陈文华, 李刚, 许方程, 等. 染料废水污染现状及处理方法研究进展[J]. 浙江农业科学, 2014(2):264-269.
[53] Robinson T, Mcmullan G, Marchant R, et al. Remediation of dyes in textile effluent, a critical review on current treatment technologies with a proposed alternative[J]. Bioresource Technology, 2001, 77:247-255.
[54] 徐文东, 文湘华. 微生物在含染料废水处理中的应用[J]. 环境污染治理技术与设备, 2000, 1(2):9-16.
[55] Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters:A review[J]. Bioresource Technology, 2001, 79:251-262.
[56] Glenn J K, Gold M H. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Applied and Environmental Microbiology, 1983, 45:1741-1747.
[57] Martins M A M, Ferreira I C, Santos I M, et al. Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium[J]. Journal of Biotechnology, 2001, 89:91-98.
[58] Radha K V, Regupathi I, Arunagiri A, et al. Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics[J]. Process Biochemistry, 2005, 40:3337-3345.
[59] Khalid A, Arshad M, Crowley D E. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains[J]. Applied Microbiology and Biotechnology, 2008, 78:361-369.
[60] Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile wastewater using whole bacterial cells:A review[J]. Dyes and Pigments, 2003, 58:179-196.