Papers

The hypoglycemic effects of jackfruit oligopeptides in db/db diabetic mice

  • LIU Xinran ,
  • KANG Jiawei ,
  • WANG Tianxing ,
  • HAO Yuntao ,
  • ZHU Na ,
  • LIU Rui ,
  • HU Jiani ,
  • MAO Ruixue ,
  • LI Yong
Expand
  • Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China

Received date: 2019-05-22

  Revised date: 2019-10-05

  Online published: 2021-10-09

Abstract

To study the hypoglycemic effects of jackfruit oligopeptides in db/db diabetic mice, 48 db/db diabetic mice are randomly divided into six groups (with 8 mice in each group):three jackfruit oligopeptides groups (with 0.2 g/kg·bw, 0.4 g/kg·bw and 0.8 g/kg·bw JOPs, respectively, by intragastric administration), a diabetic model group, a metformin control group (with 0.2 g/kg·bw metformin hydrochloride enteric-coated tablets aqueous solution by intragastric administration) and a whey protein control group (with 0.4 g/kg·bw whey protein aqueous solution by intragastric administration), while 10 db/m mice are used as the blank control for non-diabetic mice. The fasting glucose, the OGTT-AUC, the liver glycogen and the muscle glycogen are measured during the intervention. It is shown that the JOPs could decrease the fasting blood glucose and the OGTT-AUC in the diabetic mice (P<0.05), especially in the 0.4g/kg·bw-dose group. The long-term jackfruit oligopeptides intervention can effectively reduce the blood glucose level and improve the glucose tolerance of diabetic mice.

Cite this article

LIU Xinran , KANG Jiawei , WANG Tianxing , HAO Yuntao , ZHU Na , LIU Rui , HU Jiani , MAO Ruixue , LI Yong . The hypoglycemic effects of jackfruit oligopeptides in db/db diabetic mice[J]. Science & Technology Review, 2021 , 39(18) : 94 -100 . DOI: 10.3981/j.issn.1000-7857.2021.18.013

References

[1] Cho N H, Shaw J E, Karuranga S, et al. IDF diabetes atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2018, 138:271-281.
[2] 王莹, 徐秀林, 朱乃硕. 生物活性肽降血糖功能的研究进展[J]. 食品科学, 2012, 33(9):341-344.
[3] 刘欣然, 刘思奇, 侯超, 等. 燕麦低聚肽对糖尿病大鼠血糖的影响[J]. 中国食物与营养, 2018, 24(4):46-50.
[4] 伍曾利. 苦瓜多肽降血糖功能研究[J]. 轻工科技, 2013(7):13-14.
[5] Xu M, Sun B, Li D, et al. Beneficial effects of small molecule oligopeptides isolated from panax ginseng meyer on pancreatic beta-cell dysfunction and death in diabetic rats[J]. Nutrients, 2017(9):106-110.
[6] Wang J, Liu X, Liu S, et al. Hypoglycemic effects of oat oligopeptides in high-calorie diet/stz-induced diabetic Rats[J]. Molecules, 2019, 24(3):558.
[7] 张涛, 潘永贵. 菠萝蜜营养成分及药理作用研究进展[J]. 广东农业科学, 2013, 40(4):88-90.
[8] Mehra M, Pasricha V, Gupta R K. Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils[J]. Journal of Pharmacognosy and Phytochemistry, 2015, 3(6):98-102.
[9] Ranasinghe R A S N, Maduwanthi S D T, Marapana R A U J. Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.):A review[J]. International Journal of Food Science. 2019(6):1-12.
[10] Fernando M R, Thabrew M I, Karunanayake E H. Hypoglycaemic activity of some medicinal plants in Sri-Lanka[J]. General Pharmacology, 1990, 21(5):779-782.
[11] Hettiaratchi U P K, Ekanayake S, Welihinda J. Nutritional assessment of a jackfruit (Artocarpus heterophyllus) meal[J]. Ceylon Medical Journal, 2011, 56(2):54-58.
[12] 朱超, 朱莹莹. Ⅱ型糖尿病动物模型的构建[J]. 中国实验动物学报, 2013, 21(2):84-88.
[13] Yoon U, Kwok L L, Magkidis A. Efficacy of lifestyle interventions in reducing diabetes incidence in patients with impaired glucose tolerance:A systematic review of randomized controlled trials[J]. Metabolism-clinical and Experimental. 2013, 62(2):303-314.
[14] Abdul-Ghani M A. Contributions of beta cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose[J]. Diabetes Care, 2006, 29(5):1130-1139.
[15] Sarwar N, Gao P, Seshasai S R, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease:A collaborative meta-analysis of 102 prospective studies[J]. Lancet, 2010, 375(9733):2215.
[16] Sung J, Song Y M, Ebrahim S, et al. Fasting blood glucose and the risk of stroke and myocardial infarction[J]. Circulation, 2009, 119(6):812-819.
[17] Cheng Y J, Gregg E W, Geiss L S, et al. Association of A1C and fasting plasma glucose levels with diabetic retinopathy prevalence in the U. S. population implications for diabetes diagnostic thresholds[J]. Diabetes Care, 2009, 32(11):20-27.
[18] Bock G, Chittilapilly E, Basu R, et al. Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose:Role of increased rates of gluconeogenesis[J]. Diabetes, 2007, 56(6):1703-1711.
[19] 王莹, 徐秀林, 朱乃硕. 生物活性肽降血糖功能的研究进展[J]. 食品科学, 2012, 33(9):341-344.
[20] Patil P, Mandal S, Tomar S K, et al. Food protein-derived bioactive peptides in management of type 2 diabetes[J]. European Journal of Nutrition, 2015, 54(6):863-880.
Outlines

/