Exclusive: Alzheimer's disease

Research progress in aberrant neuronal and circuit activity in Alzheimer's disease

  • SUN Binggui
Expand
  • 1. Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China;
    2. Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

Received date: 2020-11-17

  Revised date: 2021-05-30

  Online published: 2021-11-08

Abstract

The extracellular deposition of the amyloid β (Aβ) and the intracellular neurofibrillary tangles (NFTs) are hallmarks of the Alzheimer's disease (AD). Abnormal accumulation of the Aβ and the tau (the major components of the NFTs) in the brain induces the aberrant activity of neurons and the structural/functional deficits of neural circuits, which may account for the cognitive impairments in the AD patients. This paper briefly reviews the generation of the Aβ and the tau, and then focuses on the abnormal activities of neurons and neural circuits induced by the Aβ and the tau. Meanwhile, the effects of the apolipoprotein E (ApoE), the neuroinflammation and the abnormal adult neurogenesis on the aberrant activities of neurons and neural circuits in the AD patients are discussed. It is hoped that these discussions will provide insights into the mechanisms underlying the cognitive dysfunctions in the AD patients.

Cite this article

SUN Binggui . Research progress in aberrant neuronal and circuit activity in Alzheimer's disease[J]. Science & Technology Review, 2021 , 39(20) : 56 -68 . DOI: 10.3981/j.issn.1000-7857.2021.20.005

References

[1] Long J M, Holtzman D M. Alzheimer disease:An update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2):312-339.
[2] Busche M A, Hyman B T. Synergy between amyloid-beta and tau in Alzheimer's disease[J]. Nature Neuroscience 2020, 23(10):1183-1193.
[3] Zott B, Busche M A, Sperling R A, et al. What happens with the circuit in Alzheimer's disease in mice and humans[J]. Annual Review of Neuroscience, 2018, 41:277-297.
[4] Busche M A, Konnerth A. Impairments of neural circuit function in Alzheimer's disease[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2016, 371(1700):20150429.
[5] Palop J J, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease[J]. Nature Reviews Neuroscience, 2016, 17(12):777-792.
[6] Selkoe D J, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. Embo Molecular Medicine, 2016, 8(6):595-608.
[7] Vishal S, Sourabh A, Harkirat S. Alois Alzheimer (1864-1915) and the Alzheimer syndrome[J]. Journal of Medical Biography, 2011, 19(1):32-33.
[8] Goedert M. Oskar Fischer and the study of dementia[J]. Brain, 2009, 132:1102-1111.
[9] Glenner G G, Wong C W. Alzheimers-disease:Initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochemical and Biophysical Research Communications, 1984, 120(3):885-890.
[10] Glenner G G, Wong C W. Alzheimer's disease and Down's syndrome:Sharing of a unique cerebrovascular amyloid fibril protein[J]. Biochemical and Biophysical Research Communications, 1984, 122(3):1131-1135.
[11] Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. PNAS, 1985, 82(12):4245-4249.
[12] Kang J, Lemaire H G, Unterbeck A, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor[J]. Nature, 1987, 325(6106):733-736.
[13] Tanzi R E, Gusella J F, Watkins P C, et al. Amyloid beta-protein gene-CDNA, messenger-RNA distribution, and genetic-linkage near the Alzheimer locus[J]. Science, 1987, 235(4791):880-884.
[14] Stgeorgehyslop P H, Tanzi R E, Polinsky R J, et al. The genetic-defect causing familial Alzheimer's disease maps on chromosome-21[J]. Science, 1987, 235(4791):885-890.
[15] Goldgaber D, Lerman M I, McBride O W, et al. Characterization and chromosomal localization of a CDNA-encoding brain amyloid of Alzheimer's disease[J]. Science, 1987, 235(4791):877-880.
[16] Mattson M P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives[J]. Physiological Reviews, 1997, 77(4):1081-1132.
[17] Harris S S, Wolf F, De Strooper B, et al. Tipping the scales:Peptide-dependent dysregulation of neural circuit dynamics in Alzheimer's disease[J]. Neuron, 2020, 107(3):417-435.
[18] Vassar R, Bennett B D, Babu-Khan S, et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science, 1999, 286(5440):735-741.
[19] Hussain I, Powell D, Howlett D R, et al. Identification of a novel aspartic protease (Asp 2) as β-secretase[J]. Molecular and Cellular Neuroscience, 1999, 14(6):419-427.
[20] Sinha S, Anderson J P, Barbour R, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain[J]. Nature, 1999, 402(6761):537-540.
[21] Yan R Q, Bienkowski M J, Shuck M E, et al. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J]. Nature, 1999, 402(6761):533-537.
[22] Edbauer D, Winkler E, Regula J T, et al. Reconstitution of γ-secretase activity[J]. Nature Cell Biology, 2003, 5(5):486-488.
[23] Kimberly W T, LaVoie M J, Ostaszewski B L, et al. γ-secretase is a membrane proteincomplexcomprised of presenilin, nicastrin, Aph-1, and Pen-2[J]. PNAS, 2003, 100(11):6382-6387.
[24] Takami M, Nagashima Y, Sano Y, et al. γ-secretase:Successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment[J]. Journal of Neuroscience, 2009, 29(41):13042-13052.
[25] Haass C, Kaether C, Thinakaran G, et al. Trafficking and proteolytic processing of APP[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(5):a006270.
[26] Mutations APP[EB/OL].[2021-05-30]. https://www.alzforum.org/mutations/app.
[27] Jonsson T, Atwal J K, Steinberg S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline[J]. Nature, 2012, 488(7409):96-99.
[28] Liu Y W, He Y H, Zhang Y X, et al. Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals[J]. Neurobiology of Aging, 2014, 35(4):935.e11-2.
[29] Mutations PSEN-2[EB/OL].[2021-04-30]. https://www.alzforum.org/mutations/psen-1.
[30] Mutations PSEN-2[EB/OL].[2021-05-29]. https://www.alzforum.org/mutations/psen-2.
[31] Tanzi R E. The genetics of Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(10):a006296.
[32] Haass C, Schlossmacher M G, Hung A Y, et al. Amyloid β-peptide is produced by cultured-cells during normal metabolism[J]. Nature, 1992, 359(6393):322-325.
[33] Abramov E, Dolev I, Fogel H, et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses[J]. Nature Neuroscience, 2009, 12(12):1567-1576.
[34] Mucke L, Selkoe D J. Neurotoxicity of amyloid β-protein:Synaptic and network dysfunction[J]. Cold Spring Harb Perspectives in Medicine, 2012, 2(7):a006338.
[35] Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Aβ by neprilysin[J]. Science, 2001, 292(5521):1550-1552.
[36] Vekrellis K, Ye Z, Qiu W Q, et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme[J]. Journal of Neuroscience, 2000, 20(5):1657-1665.
[37] Eckman E A, Reed D K, Eckman C B. Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme[J]. Journal of Biological Chemistry, 2001, 276(27):24540-24548.
[38] ickford F, Masliah E, Britschgi M, et al. The autophagyrelated protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice[J]. Journal of Clinical Investigation, 2008, 118(6):2190-2199.
[39] Lipinski M M, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease[J]. PNAS, 2010, 107(32):14164-14169.
[40] Hur J Y, Frost G R, Wu X Z, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740.
[41] Heneka M T, Kummer M P, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493(7434):674-678.
[42] Najm R, Jones E A, Huang Y D. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease[J]. Molecular Neurodegeneration, 2019, 14(1):24.
[43] Selkoe D J. The molecular pathology of Alzheimer's disease[J]. Neuron, 1991, 6(4):487-498.
[44] Hardy J, Allsop D. Amyloid deposition as the central event in the etiology of Alzheimer's disease[J]. Trends in Pharmacological Sciences, 1991, 12(10):383-388.
[45] Hsia A Y, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models[J]. PNAS, 1999, 96(6):3228-3233.
[46] Shankar G M, Li S M, Mehta T H, et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nature Medicine, 2008, 14(8):837-842.
[47] Walsh D M, Klyubin I, Fadeeva J V, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature, 2002, 416(6880):535-539.
[48] Hsieh H, Boehm J, Sato C, et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss[J]. Neuron, 2006, 52(5):831-843.
[49] Hanseeuw B J, Betensky R A, Schultz A P, et al. Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline[J]. Annals of Neurology, 2017, 81(4):583-596.
[50] Vossel K A, Ranasinghe K G, Beagle A J, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease[J]. Annals of Neurology, 2016, 80(6):858-870.
[51] Bakker A, Krauss G L, Albert M S, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment[J]. Neuron, 2012, 74(3):467-474.
[52] Palop J J, Chin J, Roberson E D, et al. Aberrant excitatory neuronal activity andcompensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease[J]. Neuron, 2007, 55(5):697-711.
[53] Sanchez P E, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model[J]. PNAS, 2012, 109(42):E2895-E2903.
[54] Busche M A, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease[J]. Science, 2008, 321(5896):1686-1689.
[55] Busche M A, Chen X W, Henning H A, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease[J]. PNAS, 2012, 109(22):8740-8745.
[56] Grienberger C, Rochefort N L, Adelsberger H, et al. Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease[J]. Nature Communications, 2012, 3:774.
[57] Rudinskiy N, Hawkes J M, Betensky R A, et al. Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease[J]. Nature Neuroscience, 2012, 15(10):1422-1429.
[58] Siskova Z, Justus D, Kaneko H, et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer's disease[J]. Neuron, 2014, 84(5):1023-1033.
[59] Johnson E C B, Ho K, Yu G Q, et al. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1[J]. Molecular Neurodegeneration, 2020, 15(1):53.
[60] Zott B, Simon M M, Hong W, et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation[J]. Science, 2019, 365(6453):559-565.
[61] Verret L, Mann E O, Hang G B, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model[J]. Cell, 2012, 149(3):708-721.
[62] Roberson E D, Halabisky B, Yoo J W, et al. Amyloidbeta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease[J]. Journal of Neuroscience, 2011, 31(2):700-711.
[63] Cardin J A, Carlen M, Meletis K, et al. Driving fastspiking cells induces gamma rhythm and controls sensory responses[J]. Nature, 2009, 459(7247):663-667.
[64] Sohal V S, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance[J]. Nature, 2009, 459(7247):698-702.
[65] Walker L C, Jucker M. The exceptional vulnerability of humans to Alzheimer's disease[J]. Trends in Molecular Medicine, 2017, 23(6):534-545.
[66] Roberson E D, Scearce-Levie K, Palop J J, et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model[J]. Science, 2007, 316(5825):750-754.
[67] Wang Y P, Mandelkow E. Tau in physiology and pathology[J]. Nature Reviews Neuroscience, 2016, 17(1):5-21.
[68] Grundkeiqbal I, Iqbal K, Quinlan M, et al. Microtubuleassociated protein-tau:Acomponent of alzheimer paired helical filaments[J]. Journal of Biological Chemistry, 1986, 261(13):6084-6089.
[69] Grundkeiqbal I, Iqbal K, Tung Y C, et al. Abnormal phosphorylation of the microtubule-associated proteintau (tau) in Alzheimer cytoskeletal pathology[J]. PNAS, 1986, 83(13):4913-4917.
[70] Kosik K S, Joachim C L, Selkoe D J. Microtubule-associated protein tau (tau) is a major antigeniccomponent of paired helical filaments in Alzheimer-disease[J]. PNAS, 1986, 83(11):4044-4048.
[71] Matsuo E S, Shin R W, Billingsley M L, et al. Biopsyderived adult human brain tau is phosphorylated at many of the same sites as Alzheimers-disease paired helical filament-tau[J]. Neuron, 1994, 13(4):989-1002.
[72] Ittner L M, Ke Y D, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models[J]. Cell, 2010, 142(3):387-397.
[73] Hartig W, Stieler J, Boerema A S, et al. Hibernation model of tau phosphorylation in hamsters:Selective vulnerability of cholinergic basal forebrain neurons-implications for Alzheimer's disease[J]. European Journal of Neuroscience, 2007, 25(1):69-80.
[74] Ittner A, Asih P R, Tan A R P, et al. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ[J]. Acta Neuropathologica, 2020, 140(3):279-294.
[75] Ittner A, Chua S W, Bertz J, et al. Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice[J]. Science, 2016, 354(6314):904-908.
[76] Morris M, Knudsen G M, Maeda S, et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice[J]. Nature Neuroscience, 2015, 18(8):1183-1189.
[77] Min S W, Cho S H, Zhou Y G, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy[J]. Neuron, 2010, 67(6):953-966.
[78] Min S W, Chen X, Tracy T E, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits[J]. Nature Medicine, 2015, 21(10):1154-1162.
[79] Busche M A, Wegmann S, Dujardin S, et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo[J]. Nature Neuroscience 2019, 22(1):57-64.
[80] Marinković P, Blumenstock S, Goltstein P M, et al. In vivo imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model[J]. Brain, 2019, 142:1051-1062.
[81] Chin J, Palop J J, Yu G Q, et al. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice[J]. Journal of Neuroscience, 2004, 24(19):4692-4697.
[82] Chin J, Palop J J, Puolivali J, et al. Fyn kinase induces synaptic and cognitive impairments in a Transgenic mouse model of Alzheimer's disease[J]. Journal of Neuroscience, 2005, 25(42):9694-9703.
[83] Mahley R W, Huang Y D. Apolipoprotein E sets the stage:Response to injury triggers neuropathology[J]. Neuron, 2012, 76(5):871-885.
[84] Corder E H, Saunders A M, Strittmatter W J, et al. Gene dose of apolipoprotein-E type-4 allele and the risk of Alzheimers-disease in late-onset families[J]. Science, 1993, 261(5123):921-923.
[85] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein-E:High-avidity binding to β-amyloid and increased frequency of type-4 allele in late-onset familial Alzheimer disease[J]. PNAS, 1993, 90(5):1977-1981.
[86] Kauffman M A, Consalvo D, Moron D G, et al. ApoE epsilon 4 genotype and the age at onset of temporal lobe epilepsy:A case-control study and meta-analysis[J]. Epilepsy Research, 2010, 90(3):234-239.
[87] Gillespie A K, Jones E A, Lin Y H, et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples[J]. Neuron, 2016, 90(4):740-751.
[88] Andrews-Zwilling Y, Bien-Ly N, Xu Q, et al. Apolipoprotein E4 causes age-and tau-dependent impairment of gabaergic interneurons, leading to learning and memory deficits in mice[J]. Journal of Neuroscience, 2010, 30(41):13707-13717.
[89] Tong L M, Yoon S Y, Andrews-Zwilling Y, et al. Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice[J]. Journal of Neuroscience, 2016, 36(7):2316-2322.
[90] Tong L M, Djukic B, Arnold C, et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation[J]. Journal of Neuroscience, 2014, 34(29):9506-9515.
[91] Knoferle J, Yoon S Y, Walker D, et al. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice[J]. Journal of Neuroscience, 2014, 34(42):14069-14078.
[92] Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease:A brief review of the basic science and clinical literature[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(1):a006346.
[93] Hong S, Beja-Glasser V F, Nfonoyim B M, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286):712-716.
[94] Elmore M R P, Najafi A R, Koike M A, et al. Colonystimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2):380-397.
[95] Badimon A, Strasburger H J, Ayata P, et al. Negative feedback control of neuronal activity by microglia[J]. Nature, 2020, 586(7829):417-423.
[96] Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases[J]. Immunity, 2017, 47(3):566-581.e9.
[97] Wang Y M, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model[J]. Cell, 2015, 160(6):1061-1071.
[98] Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease[J]. Cell, 2017, 169(7):1276-1290. e17.
[99] Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment[J]. Nature Neuroscience, 2019, 22(2):154-166.
[100] Jo S, Yarishkin O, Hwang Y J, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease[J]. Nature Medicine, 2014, 20(8):886-896.
[101] Grkovic I, Drakulic D, Martinovic J, et al. Role of ectonucleotidases in synapse formation during brain development:Physiological and pathological implications[J]. Current Neuropharmacology, 2019, 17(1):84-98.
[102] Gage F H. Adult neurogenesis in mammals[J]. Science, 2019, 364(6443):827-828.
[103] Toda T, Parylak S L, Linker S B, et al. The role of adult hippocampal neurogenesis in brain health and disease[J]. Molecular Psychiatry, 2019, 24(1):67-87.
[104] Ge S Y, Yang C H, Hsu K S, et al. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain[J]. Neuron, 2007, 54(4):559-566.
[105] Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus[J]. Nature, 2004, 429(6988):184-187.
[106] Lacefield C O, Itskov V, Reardon T, et al. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus[J]. Hippocampus, 2012, 22(1):106-116.
[107] Drew L J, Kheirbek M A, Luna V M, et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons[J]. Hippocampus, 2016, 26(6):763-778.
[108] Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility-linking memory and mood[J]. Nature Reviews Neuroscience, 2017, 18(6):335-346.
[109] Jin K L, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP(sw, lnd))mice[J]. PNAS, 2004, 101(36):13363-13367.
[110] Sun B G, Halabisky B, Zhou Y G, et al. Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer's disease[J]. Cell Stem Cell, 2009, 5(6):624-633.
[111] Krezymon A, Richetin K, Halley H, et al. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the Tg2576 mouse model of Alzheimer's disease[J]. PloS One, 2013, 8(9):e76497.
[112] Richetin K, Leclerc C, Toni N, et al. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease[J]. Brain, 2015, 138:440-455.
[113] Wang J M, Singh C, Liu L F, et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease[J]. PNAS, 2010, 107(14):6498-6503.
[114] Hollands C, Tobin M K, Hsu M, et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease bycompromising hippocampal inhibition[J]. Molecular Neurodegeneration, 2017, 12(1):64.
[115] Choi S H, Bylykbashi E, Chatila Z K, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model[J]. Science, 2018, 361(6406):eaan8821.
[116] Zhang X Q, Mei Y F, He Y, et al. Ablating adult neural stem cells improves synaptic and cognitive functions in Alzheimer models[J]. Stem Cell Reports, 2021, 16(1):89-105.
[117] Moreno-Jimenez E P, Flor-Garcia M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease[J]. Nature Medicine, 2019, 25(4):554-560.
[118] Tobin M K, Musaraca K, Disouky A, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer's disease patients[J]. Cell Stem Cell, 2019, 24(6):974-982.e3.
[119] Guo Z Y, Zhang L, Wu Z, et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model[J]. Cell Stem Cell, 2014, 14(2):188-202.
Outlines

/