[1] Long J M, Holtzman D M. Alzheimer disease:An update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2):312-339.
[2] Busche M A, Hyman B T. Synergy between amyloid-beta and tau in Alzheimer's disease[J]. Nature Neuroscience 2020, 23(10):1183-1193.
[3] Zott B, Busche M A, Sperling R A, et al. What happens with the circuit in Alzheimer's disease in mice and humans[J]. Annual Review of Neuroscience, 2018, 41:277-297.
[4] Busche M A, Konnerth A. Impairments of neural circuit function in Alzheimer's disease[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2016, 371(1700):20150429.
[5] Palop J J, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease[J]. Nature Reviews Neuroscience, 2016, 17(12):777-792.
[6] Selkoe D J, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. Embo Molecular Medicine, 2016, 8(6):595-608.
[7] Vishal S, Sourabh A, Harkirat S. Alois Alzheimer (1864-1915) and the Alzheimer syndrome[J]. Journal of Medical Biography, 2011, 19(1):32-33.
[8] Goedert M. Oskar Fischer and the study of dementia[J]. Brain, 2009, 132:1102-1111.
[9] Glenner G G, Wong C W. Alzheimers-disease:Initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochemical and Biophysical Research Communications, 1984, 120(3):885-890.
[10] Glenner G G, Wong C W. Alzheimer's disease and Down's syndrome:Sharing of a unique cerebrovascular amyloid fibril protein[J]. Biochemical and Biophysical Research Communications, 1984, 122(3):1131-1135.
[11] Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. PNAS, 1985, 82(12):4245-4249.
[12] Kang J, Lemaire H G, Unterbeck A, et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor[J]. Nature, 1987, 325(6106):733-736.
[13] Tanzi R E, Gusella J F, Watkins P C, et al. Amyloid beta-protein gene-CDNA, messenger-RNA distribution, and genetic-linkage near the Alzheimer locus[J]. Science, 1987, 235(4791):880-884.
[14] Stgeorgehyslop P H, Tanzi R E, Polinsky R J, et al. The genetic-defect causing familial Alzheimer's disease maps on chromosome-21[J]. Science, 1987, 235(4791):885-890.
[15] Goldgaber D, Lerman M I, McBride O W, et al. Characterization and chromosomal localization of a CDNA-encoding brain amyloid of Alzheimer's disease[J]. Science, 1987, 235(4791):877-880.
[16] Mattson M P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives[J]. Physiological Reviews, 1997, 77(4):1081-1132.
[17] Harris S S, Wolf F, De Strooper B, et al. Tipping the scales:Peptide-dependent dysregulation of neural circuit dynamics in Alzheimer's disease[J]. Neuron, 2020, 107(3):417-435.
[18] Vassar R, Bennett B D, Babu-Khan S, et al. β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE[J]. Science, 1999, 286(5440):735-741.
[19] Hussain I, Powell D, Howlett D R, et al. Identification of a novel aspartic protease (Asp 2) as β-secretase[J]. Molecular and Cellular Neuroscience, 1999, 14(6):419-427.
[20] Sinha S, Anderson J P, Barbour R, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain[J]. Nature, 1999, 402(6761):537-540.
[21] Yan R Q, Bienkowski M J, Shuck M E, et al. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity[J]. Nature, 1999, 402(6761):533-537.
[22] Edbauer D, Winkler E, Regula J T, et al. Reconstitution of γ-secretase activity[J]. Nature Cell Biology, 2003, 5(5):486-488.
[23] Kimberly W T, LaVoie M J, Ostaszewski B L, et al. γ-secretase is a membrane proteincomplexcomprised of presenilin, nicastrin, Aph-1, and Pen-2[J]. PNAS, 2003, 100(11):6382-6387.
[24] Takami M, Nagashima Y, Sano Y, et al. γ-secretase:Successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment[J]. Journal of Neuroscience, 2009, 29(41):13042-13052.
[25] Haass C, Kaether C, Thinakaran G, et al. Trafficking and proteolytic processing of APP[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(5):a006270.
[26] Mutations APP[EB/OL].[2021-05-30]. https://www.alzforum.org/mutations/app.
[27] Jonsson T, Atwal J K, Steinberg S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline[J]. Nature, 2012, 488(7409):96-99.
[28] Liu Y W, He Y H, Zhang Y X, et al. Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals[J]. Neurobiology of Aging, 2014, 35(4):935.e11-2.
[29] Mutations PSEN-2[EB/OL].[2021-04-30]. https://www.alzforum.org/mutations/psen-1.
[30] Mutations PSEN-2[EB/OL].[2021-05-29]. https://www.alzforum.org/mutations/psen-2.
[31] Tanzi R E. The genetics of Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(10):a006296.
[32] Haass C, Schlossmacher M G, Hung A Y, et al. Amyloid β-peptide is produced by cultured-cells during normal metabolism[J]. Nature, 1992, 359(6393):322-325.
[33] Abramov E, Dolev I, Fogel H, et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses[J]. Nature Neuroscience, 2009, 12(12):1567-1576.
[34] Mucke L, Selkoe D J. Neurotoxicity of amyloid β-protein:Synaptic and network dysfunction[J]. Cold Spring Harb Perspectives in Medicine, 2012, 2(7):a006338.
[35] Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Aβ by neprilysin[J]. Science, 2001, 292(5521):1550-1552.
[36] Vekrellis K, Ye Z, Qiu W Q, et al. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme[J]. Journal of Neuroscience, 2000, 20(5):1657-1665.
[37] Eckman E A, Reed D K, Eckman C B. Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme[J]. Journal of Biological Chemistry, 2001, 276(27):24540-24548.
[38] ickford F, Masliah E, Britschgi M, et al. The autophagyrelated protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice[J]. Journal of Clinical Investigation, 2008, 118(6):2190-2199.
[39] Lipinski M M, Zheng B, Lu T, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease[J]. PNAS, 2010, 107(32):14164-14169.
[40] Hur J Y, Frost G R, Wu X Z, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740.
[41] Heneka M T, Kummer M P, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493(7434):674-678.
[42] Najm R, Jones E A, Huang Y D. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease[J]. Molecular Neurodegeneration, 2019, 14(1):24.
[43] Selkoe D J. The molecular pathology of Alzheimer's disease[J]. Neuron, 1991, 6(4):487-498.
[44] Hardy J, Allsop D. Amyloid deposition as the central event in the etiology of Alzheimer's disease[J]. Trends in Pharmacological Sciences, 1991, 12(10):383-388.
[45] Hsia A Y, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models[J]. PNAS, 1999, 96(6):3228-3233.
[46] Shankar G M, Li S M, Mehta T H, et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nature Medicine, 2008, 14(8):837-842.
[47] Walsh D M, Klyubin I, Fadeeva J V, et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature, 2002, 416(6880):535-539.
[48] Hsieh H, Boehm J, Sato C, et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss[J]. Neuron, 2006, 52(5):831-843.
[49] Hanseeuw B J, Betensky R A, Schultz A P, et al. Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline[J]. Annals of Neurology, 2017, 81(4):583-596.
[50] Vossel K A, Ranasinghe K G, Beagle A J, et al. Incidence and impact of subclinical epileptiform activity in Alzheimer's disease[J]. Annals of Neurology, 2016, 80(6):858-870.
[51] Bakker A, Krauss G L, Albert M S, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment[J]. Neuron, 2012, 74(3):467-474.
[52] Palop J J, Chin J, Roberson E D, et al. Aberrant excitatory neuronal activity andcompensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease[J]. Neuron, 2007, 55(5):697-711.
[53] Sanchez P E, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model[J]. PNAS, 2012, 109(42):E2895-E2903.
[54] Busche M A, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease[J]. Science, 2008, 321(5896):1686-1689.
[55] Busche M A, Chen X W, Henning H A, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease[J]. PNAS, 2012, 109(22):8740-8745.
[56] Grienberger C, Rochefort N L, Adelsberger H, et al. Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease[J]. Nature Communications, 2012, 3:774.
[57] Rudinskiy N, Hawkes J M, Betensky R A, et al. Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease[J]. Nature Neuroscience, 2012, 15(10):1422-1429.
[58] Siskova Z, Justus D, Kaneko H, et al. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer's disease[J]. Neuron, 2014, 84(5):1023-1033.
[59] Johnson E C B, Ho K, Yu G Q, et al. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1[J]. Molecular Neurodegeneration, 2020, 15(1):53.
[60] Zott B, Simon M M, Hong W, et al. A vicious cycle of β amyloid-dependent neuronal hyperactivation[J]. Science, 2019, 365(6453):559-565.
[61] Verret L, Mann E O, Hang G B, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model[J]. Cell, 2012, 149(3):708-721.
[62] Roberson E D, Halabisky B, Yoo J W, et al. Amyloidbeta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease[J]. Journal of Neuroscience, 2011, 31(2):700-711.
[63] Cardin J A, Carlen M, Meletis K, et al. Driving fastspiking cells induces gamma rhythm and controls sensory responses[J]. Nature, 2009, 459(7247):663-667.
[64] Sohal V S, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance[J]. Nature, 2009, 459(7247):698-702.
[65] Walker L C, Jucker M. The exceptional vulnerability of humans to Alzheimer's disease[J]. Trends in Molecular Medicine, 2017, 23(6):534-545.
[66] Roberson E D, Scearce-Levie K, Palop J J, et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model[J]. Science, 2007, 316(5825):750-754.
[67] Wang Y P, Mandelkow E. Tau in physiology and pathology[J]. Nature Reviews Neuroscience, 2016, 17(1):5-21.
[68] Grundkeiqbal I, Iqbal K, Quinlan M, et al. Microtubuleassociated protein-tau:Acomponent of alzheimer paired helical filaments[J]. Journal of Biological Chemistry, 1986, 261(13):6084-6089.
[69] Grundkeiqbal I, Iqbal K, Tung Y C, et al. Abnormal phosphorylation of the microtubule-associated proteintau (tau) in Alzheimer cytoskeletal pathology[J]. PNAS, 1986, 83(13):4913-4917.
[70] Kosik K S, Joachim C L, Selkoe D J. Microtubule-associated protein tau (tau) is a major antigeniccomponent of paired helical filaments in Alzheimer-disease[J]. PNAS, 1986, 83(11):4044-4048.
[71] Matsuo E S, Shin R W, Billingsley M L, et al. Biopsyderived adult human brain tau is phosphorylated at many of the same sites as Alzheimers-disease paired helical filament-tau[J]. Neuron, 1994, 13(4):989-1002.
[72] Ittner L M, Ke Y D, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models[J]. Cell, 2010, 142(3):387-397.
[73] Hartig W, Stieler J, Boerema A S, et al. Hibernation model of tau phosphorylation in hamsters:Selective vulnerability of cholinergic basal forebrain neurons-implications for Alzheimer's disease[J]. European Journal of Neuroscience, 2007, 25(1):69-80.
[74] Ittner A, Asih P R, Tan A R P, et al. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ[J]. Acta Neuropathologica, 2020, 140(3):279-294.
[75] Ittner A, Chua S W, Bertz J, et al. Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice[J]. Science, 2016, 354(6314):904-908.
[76] Morris M, Knudsen G M, Maeda S, et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice[J]. Nature Neuroscience, 2015, 18(8):1183-1189.
[77] Min S W, Cho S H, Zhou Y G, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy[J]. Neuron, 2010, 67(6):953-966.
[78] Min S W, Chen X, Tracy T E, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits[J]. Nature Medicine, 2015, 21(10):1154-1162.
[79] Busche M A, Wegmann S, Dujardin S, et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo[J]. Nature Neuroscience 2019, 22(1):57-64.
[80] Marinković P, Blumenstock S, Goltstein P M, et al. In vivo imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model[J]. Brain, 2019, 142:1051-1062.
[81] Chin J, Palop J J, Yu G Q, et al. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice[J]. Journal of Neuroscience, 2004, 24(19):4692-4697.
[82] Chin J, Palop J J, Puolivali J, et al. Fyn kinase induces synaptic and cognitive impairments in a Transgenic mouse model of Alzheimer's disease[J]. Journal of Neuroscience, 2005, 25(42):9694-9703.
[83] Mahley R W, Huang Y D. Apolipoprotein E sets the stage:Response to injury triggers neuropathology[J]. Neuron, 2012, 76(5):871-885.
[84] Corder E H, Saunders A M, Strittmatter W J, et al. Gene dose of apolipoprotein-E type-4 allele and the risk of Alzheimers-disease in late-onset families[J]. Science, 1993, 261(5123):921-923.
[85] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein-E:High-avidity binding to β-amyloid and increased frequency of type-4 allele in late-onset familial Alzheimer disease[J]. PNAS, 1993, 90(5):1977-1981.
[86] Kauffman M A, Consalvo D, Moron D G, et al. ApoE epsilon 4 genotype and the age at onset of temporal lobe epilepsy:A case-control study and meta-analysis[J]. Epilepsy Research, 2010, 90(3):234-239.
[87] Gillespie A K, Jones E A, Lin Y H, et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples[J]. Neuron, 2016, 90(4):740-751.
[88] Andrews-Zwilling Y, Bien-Ly N, Xu Q, et al. Apolipoprotein E4 causes age-and tau-dependent impairment of gabaergic interneurons, leading to learning and memory deficits in mice[J]. Journal of Neuroscience, 2010, 30(41):13707-13717.
[89] Tong L M, Yoon S Y, Andrews-Zwilling Y, et al. Enhancing GABA signaling during middle adulthood prevents age-dependent GABAergic interneuron decline and learning and memory deficits in ApoE4 mice[J]. Journal of Neuroscience, 2016, 36(7):2316-2322.
[90] Tong L M, Djukic B, Arnold C, et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation[J]. Journal of Neuroscience, 2014, 34(29):9506-9515.
[91] Knoferle J, Yoon S Y, Walker D, et al. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice[J]. Journal of Neuroscience, 2014, 34(42):14069-14078.
[92] Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease:A brief review of the basic science and clinical literature[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(1):a006346.
[93] Hong S, Beja-Glasser V F, Nfonoyim B M, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286):712-716.
[94] Elmore M R P, Najafi A R, Koike M A, et al. Colonystimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2):380-397.
[95] Badimon A, Strasburger H J, Ayata P, et al. Negative feedback control of neuronal activity by microglia[J]. Nature, 2020, 586(7829):417-423.
[96] Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases[J]. Immunity, 2017, 47(3):566-581.e9.
[97] Wang Y M, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model[J]. Cell, 2015, 160(6):1061-1071.
[98] Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer's disease[J]. Cell, 2017, 169(7):1276-1290. e17.
[99] Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment[J]. Nature Neuroscience, 2019, 22(2):154-166.
[100] Jo S, Yarishkin O, Hwang Y J, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease[J]. Nature Medicine, 2014, 20(8):886-896.
[101] Grkovic I, Drakulic D, Martinovic J, et al. Role of ectonucleotidases in synapse formation during brain development:Physiological and pathological implications[J]. Current Neuropharmacology, 2019, 17(1):84-98.
[102] Gage F H. Adult neurogenesis in mammals[J]. Science, 2019, 364(6443):827-828.
[103] Toda T, Parylak S L, Linker S B, et al. The role of adult hippocampal neurogenesis in brain health and disease[J]. Molecular Psychiatry, 2019, 24(1):67-87.
[104] Ge S Y, Yang C H, Hsu K S, et al. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain[J]. Neuron, 2007, 54(4):559-566.
[105] Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus[J]. Nature, 2004, 429(6988):184-187.
[106] Lacefield C O, Itskov V, Reardon T, et al. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus[J]. Hippocampus, 2012, 22(1):106-116.
[107] Drew L J, Kheirbek M A, Luna V M, et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons[J]. Hippocampus, 2016, 26(6):763-778.
[108] Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility-linking memory and mood[J]. Nature Reviews Neuroscience, 2017, 18(6):335-346.
[109] Jin K L, Galvan V, Xie L, et al. Enhanced neurogenesis in Alzheimer's disease transgenic (PDGF-APP(sw, lnd))mice[J]. PNAS, 2004, 101(36):13363-13367.
[110] Sun B G, Halabisky B, Zhou Y G, et al. Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer's disease[J]. Cell Stem Cell, 2009, 5(6):624-633.
[111] Krezymon A, Richetin K, Halley H, et al. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the Tg2576 mouse model of Alzheimer's disease[J]. PloS One, 2013, 8(9):e76497.
[112] Richetin K, Leclerc C, Toni N, et al. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease[J]. Brain, 2015, 138:440-455.
[113] Wang J M, Singh C, Liu L F, et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease[J]. PNAS, 2010, 107(14):6498-6503.
[114] Hollands C, Tobin M K, Hsu M, et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease bycompromising hippocampal inhibition[J]. Molecular Neurodegeneration, 2017, 12(1):64.
[115] Choi S H, Bylykbashi E, Chatila Z K, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model[J]. Science, 2018, 361(6406):eaan8821.
[116] Zhang X Q, Mei Y F, He Y, et al. Ablating adult neural stem cells improves synaptic and cognitive functions in Alzheimer models[J]. Stem Cell Reports, 2021, 16(1):89-105.
[117] Moreno-Jimenez E P, Flor-Garcia M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease[J]. Nature Medicine, 2019, 25(4):554-560.
[118] Tobin M K, Musaraca K, Disouky A, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer's disease patients[J]. Cell Stem Cell, 2019, 24(6):974-982.e3.
[119] Guo Z Y, Zhang L, Wu Z, et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model[J]. Cell Stem Cell, 2014, 14(2):188-202.