[1] Graeber M B, Kosel S, Egensperger R, et al. Rediscovery of the case described by Alois Alzheimer in 1911:Historical, histological and molecular genetic analysis[J]. Neurogenetics, 1997, 1(1):73-80.
[2] Alzheimer's A. 2016 Alzheimer's disease facts and figures[J]. Alzheimers & Dementia, 2016, 12(4):459-509.
[3] Davies P, Maloney A J. Selective loss of central cholinergic neurons in Alzheimer's disease[J]. Lancet, 1976, 2(8000):1403.
[4] Perry E K, Perry R H, Blessed G, et al. Necropsy evidence of central cholinergic deficits in senile dementia[J]. Lancet, 1977, 1(8004):189.
[5] White P, Hiley C R, Goodhardt M J, et al. Neocortical cholinergic neurons in elderly people[J]. Lancet, 1977, 1(8013):668-671.
[6] Thal L J, Fuld P A, Masur D M, et al. Oral physostigmine and lecithin improve memory in Alzheimer disease[J]. Annals of Neurology, 1983, 13(5):491-496.
[7] Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease[J]. Trends in Pharmacological Sciences, 1991, 12(10):383-388.
[8] Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease:Progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580):353-356.
[9] Glenner G G, Wong C W. Alzheimer's disease:Initial report of the purification and characterization of a novel cerebrovascular amyloid protein[J]. Biochemical and Biophysical Research Communications, 1984, 120(3):885-890.
[10] Glenner G G, Wong C W. Alzheimer's disease and Down's syndrome:Sharing of a unique cerebrovascular amyloid fibril protein[J]. Biochemical and Biophysical Research Communications, 1984, 122(3):1131-1135.
[11] Masters C L, Simms G, Weinman N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. PNAS, 1985, 82(12):4245-4249.
[12] Itagaki S, McGeer P L, Akiyama H, et al. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease[J]. Journal of Neuroimmunology, 1989, 24(3):173-182.
[13] Rogers J, Luber-Narod J, Styren S D, et al. Expression of immune system-associated antigens by cells of the human central nervous system:Relationship to the pathology of Alzheimer's disease[J]. Neurobiology of Aging, 1988, 9(4):339-349.
[14] Bales K R, Du Y, Dodel R C, et al. The NF-kappaB/rel family of proteins mediates Abeta-induced neurotoxicity and glial activation[J]. Molecular Brain Research, 1998, 57(1):63-72.
[15] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726):1314-1318.
[16] Abdul H M, Sama M A, Furman J L, et al. Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling[J]. Journal of Neuroscience, 2009, 29(41):12957-12969.
[17] Lian H, Yang L, Cole A, et al. NFkappaB-activated astroglial release ofcomplement C3compromises neuronal morphology and function associated with Alzheimer's disease[J]. Neuron, 2015, 85(1):101-115.
[18] Wyss-Coray T. Inflammation in Alzheimer disease:Driving force, bystander or beneficial response?[J]. Nature Medicine, 2006, 12(9):1005-1015.
[19] Wyss-Coray T, Lin C, Yan F, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice[J]. Nature Medicine, 2001, 7(5):612-618.
[20] Bolmont T, Haiss F, Eicke D, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance[J]. Journal of Neuroscience, 2008, 28(16):4283-4292.
[21] Koenigsknecht-Talboo J, Meyer-Luehmann M, Parsadanian M, et al. Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice[J]. Journal of Neuroscience, 2008, 28(52):14156-14164.
[22] Heneka M T, Carson M J, El Khoury J, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurology, 2015, 14(4):388-405.
[23] Hong S, Beja-Glasser V F, Nfonoyim B M, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286):712-716.
[24] Hur J Y, Frost G R, Wu X, et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740.
[25] Group A R. Cardiovascular and cerebrovascular events in the randomized, controlled Alzheimer's disease antiinflammatory prevention trial (ADAPT)[J]. PLoS Clinical Trials, 2006, 1(7):e33.
[26] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein E:High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease[J]. PNAS, 1993, 90(5):1977-1981.
[27] Saunders A M, Strittmatter W J, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with lateonset familial and sporadic Alzheimer's disease[J]. Neurology, 1993, 43(8):1467-1472.
[28] Corder E H, Saunders A M, Strittmatter W J, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families[J]. Science, 1993, 261(5123):921-923.
[29] Poirier J, Davignon J, Bouthillier D, et al. Apolipoprotein E polymorphism and Alzheimer's disease[J]. Lancet, 1993, 342(8873):697-699.
[30] Liu C C, Liu C C, Kanekiyo T, et al. Apolipoprotein E and Alzheimer disease:Risk, mechanisms and therapy[J]. Nature Review Neurology, 2013, 9(2):106-118.
[31] Pitas R E, Boyles J K, Lee S H, et al. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein Econtaining lipoproteins[J]. Biochimica et Biophysica Acta, 1987, 917(1):148-161.
[32] Bomfim T R, Forny-Germano L, Sathler L B, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Abeta oligomers[J]. The Journal of Clinical Investigation, 2012, 122(4):1339-1353.
[33] Kukull W A, Higdon R,Bowen J D, et al. Dementia and Alzheimer disease incidence:A prospective cohort study[J]. Archives of Neurology, 2002, 59(11):1737-1746.
[34] Akomolafe A, Beiser A, Meigs J B, et al. Diabetes mellitus and risk of developing Alzheimer disease:Results from the Framingham study[J]. Archives of Neurology, 2006, 63(11):1551-1555.
[35] Huang C C, Chung C M, Leu H B, et al. Diabetes mellitus and the risk of Alzheimer's disease:A nationwide population-based study[J]. PLoS One, 2014, 9(1):e87095.
[36] Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction[J]. Clinica Chimica Acta, 2015, 444:18-23.
[37] Dickerson B C, Salat D H, Greve D N, et al. Increased hippocampal activation in mild cognitive impairmentcompared to normal aging and AD[J]. Neurology, 2005, 65(3):404-411.
[38] Bowen D M, Smith C B, White P, et al. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies[J]. Brain, 1976, 99(3):459-496.
[39] Zott B, Simon M M, Hong W, et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation[J]. Science, 2019, 365(6453):559-565.
[40] Cirrito J R, Yamada K A, Finn M B, et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo[J]. Neuron, 2005, 48(6):913-922.
[41] Cirrito J R, Kang J E, Lee J, et al. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo[J]. Neuron, 2008, 58(1):42-51.
[42] Mangialasche F, Solomon A, Winblad B, et al. Alzheimer's disease:Clinical trials and drug development[J]. Lancet Neurology, 2010, 9(7):702-716.
[43] Sanchez P E, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model[J]. PNAS, 2012, 109(42):E2895-E2903.
[44] Nukina N, Ihara Y. One of the antigenic determinants of paired helical filaments is related to tau protein[J]. Biochemical Journal, 1986, 99(5):1541-1544.
[45] Grundke-Iqbal I, Iqbal K, Quinlan M, et al. Microtubule-associated protein tau. Acomponent of Alzheimer paired helical filaments[J]. Journal of Biological Chemistry, 1986, 261(13):6084-6089.
[46] Kosik K S, Joachim C L, Selkoe D J. Microtubule-associated protein tau (tau) is a major antigeniccomponent of paired helical filaments in Alzheimer disease[J]. PNAS, 1986, 83(11):4044-4048.
[47] McKhann G M, Knopman D S, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers & Dementia, 2011, 7(3):263-269.
[48] Albert M S, DeKosky S T, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers & Dementia, 2011, 7(3):270-279.
[49] Sperling R A, Aisen P S, Beckett L A, et al. Toward defining the preclinical stages of Alzheimer's disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers & Dementia, 2011, 7(3):280-292.
[50] Hutton M, Lendon C L, Rizzu P, et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17[J]. Nature, 1998, 393(6686):702-705.
[51] Poorkaj P, Bird T D, Wijsman E, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia[J]. Annals of Neurology, 1998, 43(6):815-825.
[52] Spillantini M G, Murrell J R, Goedert M, et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia[J]. PNAS, 1998, 95(13):7737-7741.
[53] Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta Neuropathologica, 1991, 82(4):239-259.
[54] Wong Y C, Krainc D. Alpha-synuclein toxicity in neurodegeneration:Mechanism and therapeutic strategies[J]. Nature Medicine, 2017, 23(2):1-13.
[55] Spires-Jones T L, Attems J, Thal D R. Interactions of pathological proteins in neurodegenerative diseases[J]. Acta Neuropathologica, 2017, 134(2):187-205.
[56] Davis K L, Thal L J, Gamzu E R, et al. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease[J]. The New England Journal of Medicine, 1992, 327(18):1253-1259.
[57] Cummings J, Lee G, Ritter A, et al. Alzheimer's disease drug development pipeline:2020[J]. Alzheimers & Dementia:Translational Research & Clinical Interventions,2020, 6(1):e12050.
[58] Bai X C, Yan C, Yang G, et al. An atomic structure of human gamma-secretase[J]. Nature, 2015, 525(7568):212-217.
[59] Fitzpatrick A W P, Falcon B, He S, et al. Cryo-EM structures of tau filaments from Alzheimer's disease[J]. Nature, 2017, 547(7662):185-190.
[60] Yang G, Zhou R, Zhou Q, et al. Structural basis of Notch recognition by human gamma-secretase[J]. Nature, 2019, 565(7738):192-197.
[61] Zhou R, Yang G, Guo X, et al. Recognition of the amyloid precursor protein by human gamma-secretase[J]. Science, 2019, 363(6428):eaaw0930.
[62] Kollmer M, Close W, Funk L, et al. Cryo-EM structure and polymorphism of Abeta amyloid fibrils purified from Alzheimer's brain tissue[J]. Nature Communications, 2019, 10(1):4760.
[63] Yang G, Zhou R, Guo X, et al. Structural basis of gamma-secretase inhibition and modulation by small molecule drugs[J]. Cell, 2021, 184(2):521-533.e14.
[64] Roy D S, Arons A, Mitchell T I, et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease[J]. Nature, 2016, 531(7595):508-512.
[65] Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia[J]. Nature, 2016, 540(7632):230-235.
[66] Etter G, van der Veldt S, Manseau F, et al. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer's disease mouse model[J]. Nature Communications, 2019, 10(1):5322.
[67] Poll S, Mittag M, Musacchio F, et al. Memory trace interference impairs recall in a mouse model of Alzheimer's disease[J]. Nature Neuroscience, 2020, 23(8):952-958.
[68] Leinenga G, Gotz J. Scanning ultrasound removes amyloid-beta and restores memory in an Alzheimer's disease mouse model[J]. Science Translational Medicine, 2015, 7(278):278ra33.
[69] Zhen J, Qian Y, Weng X, et al. Gamma rhythm low field magnetic stimulation alleviates neuropathologic changes and rescues memory and cognitive impairments in a mouse model of Alzheimer's disease[J]. Alzheimers & Dementia:Translational Research & Clinical Interventions, 2017, 3(4):487-497.
[70] Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition[J]. Cell, 2019, 177(2):256-271.e22.
[71] Rezai A R, Ranjan M, D'Haese P F, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. PNAS, 2020, 117(17):9180-9182.
[72] Mathys H, Davila-Velderrain J, Peng Z, et al. Singlecell transcriptomic analysis of Alzheimer's disease[J]. Nature, 2019, 570(7761):332-337.
[73] Chen W T, Lu A, Craessaerts K, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease[J]. Cell, 2020, 182(4):976-991.e19.
[74] Yeh J Z. Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons[J]. Biophysical Journal, 1978, 24(2):569-574.
[75] Sohal V S, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance[J]. Nature, 2009, 459(7247):698-702.
[76] Cardin J A, Carlen M, Meletis K, et al. Driving fastspiking cells induces gamma rhythm and controls sensory responses[J]. Nature, 2009, 459(7247):663-667.
[77] Abbott A. Are infections seeding some cases of Alzheimer's disease?[J]. Nature, 2020, 587(7832):22-25.
[78] Funato H, Yoshimura M, Kusui K, et al. Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease[J]. American Journal of Pathology, 1998, 152(6):1633-1640.
[79] Yang A C, Stevens M Y, Chen M B, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis[J]. Nature, 2020, 583(7816):425-430.
[80] Couldcommon vaccines protect against Alzheimer's disease?[EB/OL]. (2020-07-29)[2021-01-03]. https://www.alzforum. org/news/conference-coverage/could-commonvaccines-protect-against-alzheimers-disease.